Main Article Content

Abstract

This research has background cause have not maximum yet of attendance’s system for now. “Absenplus” is an application attendance android based which has two features of system such as face recognition and geolocation. With technology who can help for developing “Absenplus” with design and build web and API as a web server who belong to integration into “Absenplus”’s application. So therefore the author decides to named “Design and Build Web and API on “Absenplus” using Deep Learning’s methods” to give a integration database to “Absenplus” apps. This research will take advantages of computing library of deep learning named TensorFlow and Keras. Besides, this research uses MTCNN for detection face image, Facenet Model to help model gets the extraction feature, and SVM for classification model image train and test. In geolocation’s system use geofence library to help development function geolocation’s system. This research also use Laravel framework in design and build web and API. Throughout this research give the results on “Absenplus” that user can use attendance online with face recognition and geolocation. In this result of face recognition, it can be conclude that average of predict probability is 67% with light room normally.

Keywords

Attendance, Web, API, Deep Learning, Facenet, MTCNN, SVM.

Article Details

How to Cite
Arugia, A. W. ., Junirianto, E., & Maria, E. (2022). Design and Build Web and API on “Absenplus” with Face Recognition using Deep Learning Method. TEPIAN, 3(2), 65–75. https://doi.org/10.51967/tepian.v3i2.738

References

  1. Adinoto, T. S. (2013) ‘Perancangan Absensi Karyawan SMP Negeri 1 Kramat Tegal’, Universitas Dian Nuswantoro.
  2. Achmad, Y., Wihandika, R. C. and Dewi, C. (2019) ‘Klasifikasi emosi berdasarkan ciri wajah wenggunakan convolutional neural network’, Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 3(11), pp. 10595–10604.
  3. Hasma, Y. A. and Silfianti, W. (2018) ‘Implementasi Deep Learning Menggunakan Framework Tensorflow Dengan Metode Faster Regional Convolutional Neural Network Untuk Pendeteksian Jerawat’, Jurnal Ilmiah Teknologi dan Rekayasa, 23(2), pp. 89–102. doi: 10.35760/tr.2018.v23i2.2459.
  4. Husain, A., Prastian, A. H. A. and Ramadhan, A. (2017) ‘Perancangan Sistem Absensi Online Menggunakan Android Guna Mempercepat Proses Kehadiran Karyawan Pada PT. Sintech Berkah Abadi’, Technomedia Journal, 2(1), pp. 105–116. doi: 10.33050/tmj.v2i1.319.
  5. Ilahiyah, S. and Nilogiri, A. (2018) ‘Implementasi Deep Learning Pada Identifikasi Jenis Tumbuhan Berdasarkan Citra Daun Menggunakan ConvolutionalNeural Network’, JUSTINDO (Jurnal Sistem dan Teknologi Informasi Indonesia), 3(2), pp. 49–56.
  6. Kambivi, H., Junirianto, E. and Fadhliyah, N. R. (2010) ‘Development of Inventory Management Application Using Points Of Sale laravel’, pp. 9–17.
  7. Kasim, A. A. and Sudarsono, M. (2019) ‘Algoritma Support Vector Machine (SVM) untuk Klasifikasi Ekonomi Penduduk Penerima Bantuan Pemerintah di Kecamatan Simpang Raya Sulawesi Tengah’, Seminar Nasional APTIKOM (SEMNASTIK), pp. 568–573.
  8. Jose, R. (2019) ‘A Convolutional Neural Network (CNN) Approach to detect face using Tensorflow and Keras’, Journal of emerging technologies and innovative research, 6(5), pp. 97–103.
  9. Muhammad, W., Ullah, I. and Ashfaq, M. (2020) An Introduction to Deep Convolutional Neural Networks With Keras. doi: 10.4018/978-1-7998-3095-5.ch011.
  10. Mesra, R., Rusdyanto, D. and Meiriska, I. (2018) ‘Implementasi Geolocation Absen Kehadiran Dosen Politeknik Sriwijaya (Studi Kasus Dosen Jurusan Manajemen Informatika Berbasis Android’. Available at: http://eprints.polsri.ac.id/id/eprint/5765.
  11. Neneng, N., Adi, K. and Isnanto, R. (2016) ‘Support Vector Machine Untuk Klasifikasi Citra Jenis Daging Berdasarkan Tekstur Menggunakan Ekstraksi Ciri ray Level Co-Occurrence Matrices (GLCM)’, Jurnal Sistem Informasi Bisnis, 6(1), p. 1.
  12. Nurhikmat, T. (2018) ‘Implementasi Deep Learning Untuk Image Classification Menggunakan Algoritma Convolutional Neural Network (Cnn) Pada Citra Wayang Golek’, Universitas Islam Indonesia, 10(2), pp. 1–15.
  13. Nurfita, R. D. and Ariyanto, G. (2018) ‘Implementasi Deep Learning Berbasis Tensorflow Untuk Pengenalan Sidik Jari’, Emitor: Jurnal Teknik Elektro, 18(01), pp. 22–27. doi: 10.23917/emitor.v18i01.6236.
  14. Pratama, Y., Istoningtyas, M. and Rasywir, E. (2019) ‘Pengujian Algoritma MTCNN (Multi-task Cascaded Convolutional Neural Network) untuk Sistem Pengenalan Wajah’, JURNAL MEDIA INFORMATIKA BUDIDARMA, 3, p. 240. doi: 10.30865/mib.v3i3.1324.
  15. Peryanto, A., Yudhana, A. and Umar, R. (2019) ‘Rancang Bangun Klasifikasi Citra Dengan Teknologi Deep Learning Berbasis Metode Convolutional Neural Network’, FORMAT: Jurnal Ilmiah Teknik Informatika, 8(2), pp. 138–147.
  16. Peryanto, A., Yudhana, A. and Umar, R. (2019) ‘Rancang Bangun Klasifikasi Citra Dengan Teknologi Deep Learning Berbasis Metode Convolutional Neural Network’, FORMAT: Jurnal Ilmiah Teknik Informatika, 8(2), pp. 138–147.
  17. PRAMONO, Q. A. (2020) ‘Sistem pencatatan kehadiran otomatis berdasarkan citra wajah secara’.
  18. Santoso, A. and Ariyanto, G. (2018) ‘Implementasi Deep Learning Berbasis Tensorflow’, Jurnal Emitor, 18(01), pp. 22–27.
  19. Soepomo, P. (2013) ‘Pembangunan Sistem Pencarian Lokasi Dengan Geolocation Berdasarkan Gps Berbasis Mobile Web (Studi Kasus Pencarian Lokasi Hotel Di Yogyakarta)’, Jurnal Sarjana Teknik Informatika, 1(1), pp. 90–96. doi: 10.12928/jstie.v1i1.2508.
  20. Schroff, F., Kalenichenko, D. and Philbin, J. (2015) ‘FaceNet: A unified embedding for face recognition and clustering’, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 07-12-June, pp. 815–823. doi: 10.1109/CVPR.2015.7298682.
  21. Taslim, M. M., Gunadi, K. and Tjondrowiguno, A. N. (2019) ‘Deteksi rumus matematika pada halaman dokumen digital dengan metode convolutional neural network’, Universitas Kristen Petra, Vol 7. Available at: www.arxiv.org.
  22. Wiranda, N., Purba, H. S. and Sukmawati, R. A. (2020) ‘Survei Penggunaan Tensorflow pada Machine Learning untuk Identifikasi Ikan Kawasan Lahan Basah’, IJEIS (Indonesian Journal of Electronics and Instrumentation Systems), 10(2), p. 179. doi: 10.22146/ijeis.58315.