Main Article Content
Abstract
The goal of this study is to enhance the classification accuracy of fake bandwidth using a CNN model, leveraging network logs collected in real-time. For this research, the network logs from the Cyber Security Laboratory of the University of Technology Sarawak are used as a dataset for training the CNN model. The dataset consists of 20 days of continuous network activity logging, which results in over 500,000 data entries. According to the model evaluation results, the trained CNN model demonstrated high accuracy in classifying genuine bandwidth (Precision: 0.92, Recall: 0.95). Moreover, it achieved considerable success in detecting fake bandwidth (Precision: 0.89, Recall: 0.90) and the no heavy activity category (Precision: 0.98, Recall: 0.84). Analysis of Loss Over Epochs showed a dramatic decrease in loss during the training phase, with optimal convergence reached by epoch 2000. Identifying these characteristics enables monitoring systems to classify network data with high certainty, detecting bandwidth manipulation in expansive networks. Thus, this research aids the design of dynamic network monitoring systems that require minimal response time while maintaining high accuracy.
Keywords
Article Details
Copyright (c) 2025 TEPIAN

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- Abdfilminaam, D., Alfarouk, S., Fouad, K., Slait, R., & Wasfy, R. (2024). Optimizing Brain Tumor Detection: Enhancing Diagnostic Accuracy in Brain Tumor Detection Using A Hybrid Approach of Machine Learning and Deep Learning Models. 2024 International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC), 1-8. https://doi.org/10.1109/MIUCC62295.2024.10783526.
- Alhammadi, O., & Abul, O. (2024). Real-time Web Server Log Processing with Big Data Technologies. 2024 Innovations in Intelligent Systems and Applications Conference (ASYU), 1-8. https://doi.org/10.1109/ASYU62119.2024.10757033.
- Alrubayyi, H., Goteng, G., & Jaber, M. (2023). AIS for Malware Detection in a Realistic IoT System: Challenges and Opportunities. Network, 3, 522-537. https://doi.org/10.3390/network3040023.
- Antonius, F., Sekhar, J., Rao, V., Pradhan, R., Narendran, S., Borda, R., & Silvera-Arcos, S. (2023). Unleashing the power of Bat optimized CNN-BiLSTM model for advanced network anomaly detection: Enhancing security and performance in IoT environments. Alexandria Engineering Journal. https://doi.org/10.1016/j.aej.2023.11.015.
- AsSadhan, B., AlShaalan, R., Diab, D., Alzoghaiby, A., Alshebeili, S., Al-Muhtadi, J., Bin-Abbas, H., & El-Samie, F. (2020). A robust anomaly detection method using a constant false alarm rate approach. Multimedia Tools and Applications, 79, 12727 - 12750. https://doi.org/10.1007/s11042-020-08653-8.
- Biswal, P., & Karekar, P. (2024). An Analytic Study of The Relationship Between Internet Connectivity and Productivity in The Workplace. Journal of Informatics Education and Research. https://doi.org/10.52783/jier.v4i1.635.
- Cermák, M., Fritzová, T., Rusňák, V., & Sramkova, D. (2023). Using relational graphs for exploratory analysis of network traffic data. Forensic Science International: Digital Investigation. https://doi.org/10.1016/j.fsidi.2023.301563.
- Collier-Brown, D. (2024). You Don't Know Jack about Bandwidth: If you're an ISP and all your customers hate you, take heart. This is now a solvable problem. Commun. ACM, 67, 38-41. https://doi.org/10.1145/3674953.
- Dolgui, A., & Ivanov, D. (2021). 5G in digital supply chain and operations management: fostering flexibility, end-to-end connectivity and real-time visibility through internet-of-everything. International Journal of Production Research, 60, 442 - 451. https://doi.org/10.1080/00207543.2021.2002969.
- Dong, S., Xia, Y., & Peng, T. (2021). Network Abnormal Traffic Detection Model Based on Semi-Supervised Deep Reinforcement Learning. IEEE Transactions on Network and Service Management, 18, 4197-4212. https://doi.org/10.1109/tnsm.2021.3120804.
- Duan, X., Fu, Y., & Wang, K. (2022). Network traffic anomaly detection method based on multi-scale residual classifier. Comput. Commun., 198, 206-216. https://doi.org/10.1016/j.comcom.2022.10.024.
- Fadlil, A., Umar, R., Sunardi, .., & Nugroho, A. (2022). Comparison of Machine Learning Approach for Waste Bottle Classification. Emerging Science Journal. https://doi.org/10.28991/esj-2022-06-05-011.
- Fotiadou, K., Velivasaki, T., Voulkidis, A., Skias, D., Tsekeridou, S., & Zahariadis, T. (2021). Network Traffic Anomaly Detection via Deep Learning. Inf., 12, 215. https://doi.org/10.3390/info12050215.
- Giordano, G., Palomba, F., & Ferrucci, F. (2022). On the use of artificial intelligence to deal with privacy in IoT systems: A systematic literature review. J. Syst. Softw., 193, 111475. https://doi.org/10.1016/j.jss.2022.111475.
- Gomes, R., Bittencourt, L., Madeira, E., Cerqueira, E., & Gerla, M. (2016). A combined energy-bandwidth approach to allocate resilient virtual software defined networks. J. Netw. Comput. Appl., 69, 98-106. https://doi.org/10.1016/j.jnca.2016.02.024.
- Hapsari, L. (2022, July 12). Kecepatan internet Indonesia paling lambat di Asia Tenggara, apa penyebabnya? Kumparan. https://kumparan.com/listyanihapsari171/kecepatan-internet-indonesia-paling-lambat-di-asia-tenggara-apa-penyebabnya-1yRrujdWhgj
- Jhaveri, R., Ramani, S., Srivastava, G., Gadekallu, T., & Aggarwal, V. (2021). Fault-Resilience for Bandwidth Management in Industrial Software-Defined Networks. IEEE Transactions on Network Science and Engineering, 8, 3129-3139. https://doi.org/10.1109/tnse.2021.3104499.
- Komadina, A., Martinić, M., Groš, S., & Mihajlović, Ž. (2024). Comparing Threshold Selection Methods for Network Anomaly Detection. IEEE Access, 12, 124943-124973. https://doi.org/10.1109/ACCESS.2024.3452168.
- Lyu, S., & Liu, J. (2021). Convolutional Recurrent Neural Networks for Text Classification. J. Database Manag., 32, 65-82. https://doi.org/10.4018/jdm.2021100105.
- Lv, D., Cheng, X., Zhang, J., Zhang, W., Zhao, W., & Xu, H. (2022). DDoS attack detection based on CNN and federated learning. Proceedings of the 2021 Ninth International Conference on Advanced Cloud and Big Data (CBD), 236-241. https://doi.org/10.1109/CBD54617.2021.00048
- Magnani, S., Risso, F., & Siracusa, D. (2022). A Control Plane Enabling Automated and Fully Adaptive Network Traffic Monitoring With eBPF. IEEE Access, 10, 90778-90791. https://doi.org/10.1109/ACCESS.2022.3202644.
- Najar, A., & S, M. (2024). Cyber-Secure SDN: A CNN-Based Approach for Efficient Detection and Mitigation of DDoS attacks. Comput. Secur., 139, 103716. https://doi.org/10.1016/j.cose.2024.103716.
- Oji, C., Nwankokwo, O., & Adu, C. (2021). Development Of An Enhanced Bandwidth Control Platform For Effective Monitoring And Utilization In Corporate Networks. International Journal of Scientific and Research Publications (IJSRP). https://doi.org/10.29322/ijsrp.11.08.2021.p11636.
- Onietan, C., Martins, I., Owoseni, T., Omonedo, E., & Eze, C. (2023). A Preliminary Study on the Application of Hybrid Machine Learning Techniques in Network Intrusion Detection Systems. 2023 International Conference on Science, Engineering and Business for Sustainable Development Goals (SEB-SDG), 1, 1-7. https://doi.org/10.1109/SEB-SDG57117.2023.10124596.
- Pham, H., Nguyen, V., Tran, N., & Nguyen, M. (2023). Log Analysis For Network Attack Detection Using Deep Learning Models. Proceedings of the 12th International Symposium on Information and Communication Technology. https://doi.org/10.1145/3628797.3628943.
- Razian, M., Fathian, M., Bahsoon, R., Toosi, A., & Buyya, R. (2022). Service composition in dynamic environments: A systematic review and future directions. J. Syst. Softw., 188, 111290. https://doi.org/10.1016/j.jss.2022.111290.
- Ring, J., Van Oort, C., Durst, S., White, V., Near, J., & Skalka, C. (2021). Methods for Host-Based Intrusion Detection with Deep Learning. Digital Threats: Research and Practice. https://doi.org/10.1145/3461462.
- Saha, S., Haque, A., & Sidebottom, G. (2022). An Empirical Study on Internet Traffic Prediction Using Statistical Rolling Model. 2022 International Wireless Communications and Mobile Computing (IWCMC), 1058-1063. https://doi.org/10.1109/IWCMC55113.2022.9825059
- Sari, M., Ningki, C., Rosa, F., Novando, K., & Mukin, Y. (2023). Analysis of Bandwidth Management Quality of Internet Network Services at the Shanti Bhuana Institute. Journal of Information Technology. https://doi.org/10.46229/jifotech.v3i1.666.
- Shi, J., Fu, K., Wang, J., Chen, Q., Zeng, D., & Guo, M. (2024). Adaptive QoS-Aware Microservice Deployment With Excessive Loads via Intra- and Inter-Datacenter Scheduling. IEEE Transactions on Parallel and Distributed Systems, 35, 1565-1582. https://doi.org/10.1109/TPDS.2024.3425931.
- Šabanović, K., Arendt, C., Fricke, S., Geis, M., Böcker, S., & Wietfeld, C. (2024). AI-Based Anomaly Detection for Industrial 5G Networks by Distributed SDR Measurements. 2024 IEEE International Symposium on Measurements & Networking (M&N), 1-5. https://doi.org/10.1109/MN60932.2024.10615402.
- Wang, S., Balarezo, J., Kandeepan, S., Al-Hourani, A., Chavez, K., & Rubinstein, B. (2021). Machine Learning in Network Anomaly Detection: A Survey. IEEE Access, PP, 1-1. https://doi.org/10.1109/ACCESS.2021.3126834.
- Wen, H., Yu, J., Pan, G., Chen, X., Zhang, S., & Xu, S. (2022). A Hybrid CNN-LSTM Architecture for High Accurate Edge-Assisted Bandwidth Prediction. IEEE Wireless Communications Letters, 11, 2640-2644. https://doi.org/10.1109/LWC.2022.3213017.
- Ye, M., Member, I., Member, I., & Fellow, I. (2023). FlexDATE: Flexible and Disturbance-Aware Traffic Engineering With Reinforcement Learning in Software-Defined Networks. IEEE/ACM Transactions on Networking, 31, 1433-1448. https://doi.org/10.1109/TNET.2022.3217083.
- Zhang, H., Zhang, L., Yang, Z., Lyu, Z., Yang, H., Zhang, C., Bobrovs, V., Ozoliņš, O., Pang, X., & Yu, X. (2024). Equivalent Photoconductive Time-Domain Sampling for Monitoring High-Speed Terahertz Communication Signals. Journal of Lightwave Technology, 42, 4476-4484. https://doi.org/10.1109/JLT.2024.3372382.
- Zhang, Y., Liu, W., Kuok, K., & Cheong, N. (2024). Anteater: Advanced Persistent Threat Detection With Program Network Traffic Behavior. IEEE Access, 12, 8536-8551. https://doi.org/10.1109/ACCESS.2024.3349943.
- Zhao, M., Gahrooei, M., & Ilbeigi, M. (2024). Change Detection in Partially Observed Large-Scale Traffic Network Data. IEEE Transactions on Intelligent Transportation Systems, 25, 18913-18924. https://doi.org/10.1109/TITS.2024.3440836.
- Zhuang, G. (2024). Research on Large-scale Data Anomaly Detection based on Deep Learning. 2024 5th International Conference on Information Science, Parallel and Distributed Systems (ISPDS), 249-252. https://doi.org/10.1109/ISPDS62779.2024.10667570.
References
Abdfilminaam, D., Alfarouk, S., Fouad, K., Slait, R., & Wasfy, R. (2024). Optimizing Brain Tumor Detection: Enhancing Diagnostic Accuracy in Brain Tumor Detection Using A Hybrid Approach of Machine Learning and Deep Learning Models. 2024 International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC), 1-8. https://doi.org/10.1109/MIUCC62295.2024.10783526.
Alhammadi, O., & Abul, O. (2024). Real-time Web Server Log Processing with Big Data Technologies. 2024 Innovations in Intelligent Systems and Applications Conference (ASYU), 1-8. https://doi.org/10.1109/ASYU62119.2024.10757033.
Alrubayyi, H., Goteng, G., & Jaber, M. (2023). AIS for Malware Detection in a Realistic IoT System: Challenges and Opportunities. Network, 3, 522-537. https://doi.org/10.3390/network3040023.
Antonius, F., Sekhar, J., Rao, V., Pradhan, R., Narendran, S., Borda, R., & Silvera-Arcos, S. (2023). Unleashing the power of Bat optimized CNN-BiLSTM model for advanced network anomaly detection: Enhancing security and performance in IoT environments. Alexandria Engineering Journal. https://doi.org/10.1016/j.aej.2023.11.015.
AsSadhan, B., AlShaalan, R., Diab, D., Alzoghaiby, A., Alshebeili, S., Al-Muhtadi, J., Bin-Abbas, H., & El-Samie, F. (2020). A robust anomaly detection method using a constant false alarm rate approach. Multimedia Tools and Applications, 79, 12727 - 12750. https://doi.org/10.1007/s11042-020-08653-8.
Biswal, P., & Karekar, P. (2024). An Analytic Study of The Relationship Between Internet Connectivity and Productivity in The Workplace. Journal of Informatics Education and Research. https://doi.org/10.52783/jier.v4i1.635.
Cermák, M., Fritzová, T., Rusňák, V., & Sramkova, D. (2023). Using relational graphs for exploratory analysis of network traffic data. Forensic Science International: Digital Investigation. https://doi.org/10.1016/j.fsidi.2023.301563.
Collier-Brown, D. (2024). You Don't Know Jack about Bandwidth: If you're an ISP and all your customers hate you, take heart. This is now a solvable problem. Commun. ACM, 67, 38-41. https://doi.org/10.1145/3674953.
Dolgui, A., & Ivanov, D. (2021). 5G in digital supply chain and operations management: fostering flexibility, end-to-end connectivity and real-time visibility through internet-of-everything. International Journal of Production Research, 60, 442 - 451. https://doi.org/10.1080/00207543.2021.2002969.
Dong, S., Xia, Y., & Peng, T. (2021). Network Abnormal Traffic Detection Model Based on Semi-Supervised Deep Reinforcement Learning. IEEE Transactions on Network and Service Management, 18, 4197-4212. https://doi.org/10.1109/tnsm.2021.3120804.
Duan, X., Fu, Y., & Wang, K. (2022). Network traffic anomaly detection method based on multi-scale residual classifier. Comput. Commun., 198, 206-216. https://doi.org/10.1016/j.comcom.2022.10.024.
Fadlil, A., Umar, R., Sunardi, .., & Nugroho, A. (2022). Comparison of Machine Learning Approach for Waste Bottle Classification. Emerging Science Journal. https://doi.org/10.28991/esj-2022-06-05-011.
Fotiadou, K., Velivasaki, T., Voulkidis, A., Skias, D., Tsekeridou, S., & Zahariadis, T. (2021). Network Traffic Anomaly Detection via Deep Learning. Inf., 12, 215. https://doi.org/10.3390/info12050215.
Giordano, G., Palomba, F., & Ferrucci, F. (2022). On the use of artificial intelligence to deal with privacy in IoT systems: A systematic literature review. J. Syst. Softw., 193, 111475. https://doi.org/10.1016/j.jss.2022.111475.
Gomes, R., Bittencourt, L., Madeira, E., Cerqueira, E., & Gerla, M. (2016). A combined energy-bandwidth approach to allocate resilient virtual software defined networks. J. Netw. Comput. Appl., 69, 98-106. https://doi.org/10.1016/j.jnca.2016.02.024.
Hapsari, L. (2022, July 12). Kecepatan internet Indonesia paling lambat di Asia Tenggara, apa penyebabnya? Kumparan. https://kumparan.com/listyanihapsari171/kecepatan-internet-indonesia-paling-lambat-di-asia-tenggara-apa-penyebabnya-1yRrujdWhgj
Jhaveri, R., Ramani, S., Srivastava, G., Gadekallu, T., & Aggarwal, V. (2021). Fault-Resilience for Bandwidth Management in Industrial Software-Defined Networks. IEEE Transactions on Network Science and Engineering, 8, 3129-3139. https://doi.org/10.1109/tnse.2021.3104499.
Komadina, A., Martinić, M., Groš, S., & Mihajlović, Ž. (2024). Comparing Threshold Selection Methods for Network Anomaly Detection. IEEE Access, 12, 124943-124973. https://doi.org/10.1109/ACCESS.2024.3452168.
Lyu, S., & Liu, J. (2021). Convolutional Recurrent Neural Networks for Text Classification. J. Database Manag., 32, 65-82. https://doi.org/10.4018/jdm.2021100105.
Lv, D., Cheng, X., Zhang, J., Zhang, W., Zhao, W., & Xu, H. (2022). DDoS attack detection based on CNN and federated learning. Proceedings of the 2021 Ninth International Conference on Advanced Cloud and Big Data (CBD), 236-241. https://doi.org/10.1109/CBD54617.2021.00048
Magnani, S., Risso, F., & Siracusa, D. (2022). A Control Plane Enabling Automated and Fully Adaptive Network Traffic Monitoring With eBPF. IEEE Access, 10, 90778-90791. https://doi.org/10.1109/ACCESS.2022.3202644.
Najar, A., & S, M. (2024). Cyber-Secure SDN: A CNN-Based Approach for Efficient Detection and Mitigation of DDoS attacks. Comput. Secur., 139, 103716. https://doi.org/10.1016/j.cose.2024.103716.
Oji, C., Nwankokwo, O., & Adu, C. (2021). Development Of An Enhanced Bandwidth Control Platform For Effective Monitoring And Utilization In Corporate Networks. International Journal of Scientific and Research Publications (IJSRP). https://doi.org/10.29322/ijsrp.11.08.2021.p11636.
Onietan, C., Martins, I., Owoseni, T., Omonedo, E., & Eze, C. (2023). A Preliminary Study on the Application of Hybrid Machine Learning Techniques in Network Intrusion Detection Systems. 2023 International Conference on Science, Engineering and Business for Sustainable Development Goals (SEB-SDG), 1, 1-7. https://doi.org/10.1109/SEB-SDG57117.2023.10124596.
Pham, H., Nguyen, V., Tran, N., & Nguyen, M. (2023). Log Analysis For Network Attack Detection Using Deep Learning Models. Proceedings of the 12th International Symposium on Information and Communication Technology. https://doi.org/10.1145/3628797.3628943.
Razian, M., Fathian, M., Bahsoon, R., Toosi, A., & Buyya, R. (2022). Service composition in dynamic environments: A systematic review and future directions. J. Syst. Softw., 188, 111290. https://doi.org/10.1016/j.jss.2022.111290.
Ring, J., Van Oort, C., Durst, S., White, V., Near, J., & Skalka, C. (2021). Methods for Host-Based Intrusion Detection with Deep Learning. Digital Threats: Research and Practice. https://doi.org/10.1145/3461462.
Saha, S., Haque, A., & Sidebottom, G. (2022). An Empirical Study on Internet Traffic Prediction Using Statistical Rolling Model. 2022 International Wireless Communications and Mobile Computing (IWCMC), 1058-1063. https://doi.org/10.1109/IWCMC55113.2022.9825059
Sari, M., Ningki, C., Rosa, F., Novando, K., & Mukin, Y. (2023). Analysis of Bandwidth Management Quality of Internet Network Services at the Shanti Bhuana Institute. Journal of Information Technology. https://doi.org/10.46229/jifotech.v3i1.666.
Shi, J., Fu, K., Wang, J., Chen, Q., Zeng, D., & Guo, M. (2024). Adaptive QoS-Aware Microservice Deployment With Excessive Loads via Intra- and Inter-Datacenter Scheduling. IEEE Transactions on Parallel and Distributed Systems, 35, 1565-1582. https://doi.org/10.1109/TPDS.2024.3425931.
Šabanović, K., Arendt, C., Fricke, S., Geis, M., Böcker, S., & Wietfeld, C. (2024). AI-Based Anomaly Detection for Industrial 5G Networks by Distributed SDR Measurements. 2024 IEEE International Symposium on Measurements & Networking (M&N), 1-5. https://doi.org/10.1109/MN60932.2024.10615402.
Wang, S., Balarezo, J., Kandeepan, S., Al-Hourani, A., Chavez, K., & Rubinstein, B. (2021). Machine Learning in Network Anomaly Detection: A Survey. IEEE Access, PP, 1-1. https://doi.org/10.1109/ACCESS.2021.3126834.
Wen, H., Yu, J., Pan, G., Chen, X., Zhang, S., & Xu, S. (2022). A Hybrid CNN-LSTM Architecture for High Accurate Edge-Assisted Bandwidth Prediction. IEEE Wireless Communications Letters, 11, 2640-2644. https://doi.org/10.1109/LWC.2022.3213017.
Ye, M., Member, I., Member, I., & Fellow, I. (2023). FlexDATE: Flexible and Disturbance-Aware Traffic Engineering With Reinforcement Learning in Software-Defined Networks. IEEE/ACM Transactions on Networking, 31, 1433-1448. https://doi.org/10.1109/TNET.2022.3217083.
Zhang, H., Zhang, L., Yang, Z., Lyu, Z., Yang, H., Zhang, C., Bobrovs, V., Ozoliņš, O., Pang, X., & Yu, X. (2024). Equivalent Photoconductive Time-Domain Sampling for Monitoring High-Speed Terahertz Communication Signals. Journal of Lightwave Technology, 42, 4476-4484. https://doi.org/10.1109/JLT.2024.3372382.
Zhang, Y., Liu, W., Kuok, K., & Cheong, N. (2024). Anteater: Advanced Persistent Threat Detection With Program Network Traffic Behavior. IEEE Access, 12, 8536-8551. https://doi.org/10.1109/ACCESS.2024.3349943.
Zhao, M., Gahrooei, M., & Ilbeigi, M. (2024). Change Detection in Partially Observed Large-Scale Traffic Network Data. IEEE Transactions on Intelligent Transportation Systems, 25, 18913-18924. https://doi.org/10.1109/TITS.2024.3440836.
Zhuang, G. (2024). Research on Large-scale Data Anomaly Detection based on Deep Learning. 2024 5th International Conference on Information Science, Parallel and Distributed Systems (ISPDS), 249-252. https://doi.org/10.1109/ISPDS62779.2024.10667570.