Main Article Content

Abstract

Hardly will someone acknowledge that the bandwidth we use every day is as authentic as most ISPs advertise, even those offering dedicated services. There are usually shortcomings, especially on upload and download bandwidth speeds. This paper presents the classification of simulated fake bandwidth data using the Long Short-Term Memory model, which though seldom found, is a very effective approach in network analysis. There were 1400 bandwidth data points collected from the MikroTik RB 1100 AHx device in a month, then further processed with normalization, and divided to have 80% training and 20% testing. The LSTM model applied had an accuracy rate of 98.93%, proving that it is capable of classifying either genuine or fake bandwidth instances accordingly. Of 1,400 test data points, the model managed to classify 723 as fake bandwidth and another 677 as genuine, resulting in a classification error rate of only 1.07%. The results clearly prove that LSTM has huge potential for real-time bandwidth manipulation detection, key to enhancing trust and efficiency in network management. In this respect, this research shows that bandwidth analysis combined with LSTM can be an original solution for network monitoring

Keywords

Fake Bandwidth, LSTM, Data Classification

Article Details

How to Cite
Nurcahyo, A. C., Yong, A. T. H., & Atanda, A. F. (2024). Classification of Simulated Fake Bandwidth Data Using LSTM. TEPIAN, 5(3), 35–47. https://doi.org/10.51967/tepian.v5i3.3106

References

  1. Abbasloo, S. (2023, January 1). Internet Congestion Control Benchmarking. Cornell University. https://doi.org/10.48550/arxiv.2307.10054
  2. Anderson, C. (2013, January 1). Dimming the Internet: Detecting Throttling as a Mechanism of Censorship in Iran. Cornell University. https://doi.org/10.48550/arxiv.1306.4361
  3. Antoni, Y., & Asvial, M. (2019, June 1). Strategy of National Fiber Optic Backbone Network Utilization Enhancement in Rural Area of Indonesia. IEEE International Conference on Information and Communication Technology for Rural Development (ICIRD), 9074750. https://doi.org/10.1109/icird47319.2019.9074750
  4. Aryotejo, G., & Mufadhol, M. (2019, May 1). Static and dynamic alliance: the solution of reliable internet bandwidth management. IOP Conference Series: Materials Science and Engineering, 1217(1), 012126-012126. https://doi.org/10.1088/1742-6596/1217/1/012126
  5. Azamuddin, W. M. H., Hassan, R., Aman, A. H. M., Hasan, M. K., & Al-Khaleefa, A. S. (2020, May 12). Quality of Service (QoS) Management for Local Area Network (LAN) Using Traffic Policy Technique to Secure Congestion. Multidisciplinary Digital Publishing Institute, 9(2), 39-39. https://doi.org/10.3390/computers9020039
  6. Azzouni, A., & Pujolle, G. (2017, January 1). A Long Short-Term Memory Recurrent Neural Network Framework for Network Traffic Matrix Prediction. Cornell University. https://doi.org/10.48550/arXiv.1705
  7. Bagus, R., & Suryanegara, M. (2017, August 1). Network management models to anticipate the problem of international Internet traffic in Indonesia. IEEE International Seminar on Intelligent Technology and Its Applications (ISITIA), 8124047. https://doi.org/10.1109/isitia.2017.8124047
  8. Balarezo, J. F., Wang, S., Gomez, K., Al‐Hourani, A., Fu, J., & Kandeepan, S. (2020, December 14). Low-rate TCP DDoS Attack Model in the Southbound Channel of Software Defined Networks. IEEE International Conference on Signal Processing and Communication Systems (ICSPCS), 9310040. https://doi.org/10.1109/icspcs50536.2020.9310040
  9. Bauer, S., Clark, D. D., & Lehr, W. (2010, August 15). Understanding Broadband Speed Measurements. RELX Group (Netherlands). http://cfp.mit.edu/events/may11/CFP%20Spring%202011%20PDFs/Bauer_Clark_Lehr_Broadband_Speed_Measurements.pdf
  10. Bayat, N., Misra, V., & Rubenstein, D. (2022, January 1). Bandwidth Allocation Games. Cornell University. https://doi.org/10.48550/arXiv.2204
  11. Bi, J., Zhang, X., Yuan, H., Zhang, J., & Zhou, M. (2022, July 1). A Hybrid Prediction Method for Realistic Network Traffic With Temporal Convolutional Network and LSTM. Institute of Electrical and Electronics Engineers, 19(3), 1869-1879. https://doi.org/10.1109/tase.2021.3077537
  12. Budiman, E., & Alam, S. N. (2017, November 1). User perceptions of mobile internet services performance in borneo. International Association for Cryptologic Research, 8280643. https://doi.org/10.1109/iac.2017.8280643
  13. Capone, A., Dècina, M., Milan, A., & Petracca, M. (2023, January 1). Modelling the Performance of High Capacity Access Networks for the Benefit of End-Users and Public Policies. Cornell University. https://doi.org/10.48550/arXiv.2305
  14. Casas, P. (2020, January 1). Two Decades of AI4NETS-AI/ML for Data Networks: Challenges & Research Directions. Cornell University. https://doi.org/10.48550/arxiv.2003.04080
  15. Cheng, M., Xu, Q., L.V., J., Wenyin, L., Li, Q., & Wang, J. (2016, November 1). MS-LSTM: A multi-scale LSTM model for BGP anomaly detection. https://doi.org/10.1109/icnp.2016.7785326
  16. Choffnes, D., Gill, P., & Mislove, A. (2017, March 27). An Empirical Evaluation of Deployed DPI Middleboxes and Their Implications for Policymakers. Social Science Research Network. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2941535
  17. D’Alconzo, A., Drago, I., Morichetta, A., Mellia, M., & Casas, P. (2019, September 1). A Survey on Big Data for Network Traffic Monitoring and Analysis. Institute of Electrical and Electronics Engineers, 16(3), 800-813. https://doi.org/10.1109/tnsm.2019.2933358
  18. Dasmen, R. N., & Khudri, A. (2021, February 9). Optimasi Jaringan Wireless PT. TASPEN dengan RADIUS Server dan Firewall Filter Rules. Jurnal Teknik Komputer, 20(1), 134-146. https://doi.org/10.33633/tc.v20i1.4183
  19. Donahue, J., Hendricks, L. A., Guadarrama, S., Rohrbach, M., Venugopalan, S., Darrell, T., & Saenko, K. (2015, June 1). Long-term recurrent convolutional networks for visual recognition and description. https://doi.org/10.1109/cvpr.2015.7298878
  20. Dwiardi, A. R. (2020, October 1). Analysis of the Needs of ICT Ecosystems to Support the Acceleration of Internet Fixed Broadband Penetration (case: Bogor, Sumedang, Bangli, and Karangasem). Journal of Information Systems and Informatics (JSI), 10(1), 41-58. https://doi.org/10.17933/jppi.v10i1.298
  21. Feamster, N., & Livingood, J. (2019, January 1). Internet Speed Measurement: Current Challenges and Future Recommendations. Cornell University. https://doi.org/10.48550/arxiv.1905.02334
  22. Flach, T., Papageorge, P., Terzis, A., Pedrosa, L., Cheng, Y., Karim, T., Katz-Bassett, E., & Govindan, R. (2016, August 22). An Internet-Wide Analysis of Traffic Policing. ACM SIGCOMM Computer Communication Review, 2934873. https://doi.org/10.1145/2934872.2934873
  23. Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., & Schmidhuber, J. (2017, October 1). LSTM: A Search Space Odyssey. Institute of Electrical and Electronics Engineers, 28(10), 2222-2232. https://doi.org/10.1109/tnnls.2016.2582924
  24. Indonesia WiFi Access Innovation. (2023, February 6). Web Archive. https://web.archive.org/web/20100507222442/http://lirneasia.net/projects/2004-05/indonesia-wifi/
  25. Jay, N., Rotman, N. H., Godfrey, P. B., Schapira, M., & Tamar, A. (2018, January 1). Internet Congestion Control via Deep Reinforcement Learning. Cornell University. https://doi.org/10.48550/arxiv.1810.03259
  26. Karim, F., Majumdar, S., Darabi, H., & Chen, S. (2018, January 1). LSTM Fully Convolutional Networks for Time Series Classification. Institute of Electrical and Electronics Engineers, 6, 1662-1669. https://doi.org/10.1109/access.2017.2779939
  27. Kim, K. S. (2014, January 1). Toward Fully-Shared Access: Designing ISP Service Plans Leveraging Excess Bandwidth Allocation. Cornell University. https://doi.org/10.48550/arxiv.1409.4499
  28. Li, F., Niaki, A. A., Choffnes, D., Gill, P., & Mislove, A. (2019, August 19). A large-scale analysis of deployed traffic differentiation practices. Proceedings of the ACM SIGCOMM Conference, 3341302. https://doi.org/10.1145/3341302.3342092
  29. Lu, H., & Yang, F. (2018, December 1). Research on Network Traffic Prediction Based on Long Short-Term Memory Neural Network. https://doi.org/10.1109/compcomm.2018.8781071
  30. MacMillan, K., Mangla, T., Saxon, J., Marwell, N. P., & Feamster, N. (2022, January 1). A Comparative Analysis of Ookla Speedtest and Measurement Labs Network Diagnostic Test (NDT7). Cornell University. https://doi.org/10.48550/arxiv.2205.12376
  31. Macura, L., Rozhon, J., & Lin, J C. (2017, November 2). Employing Monitoring System to Analyze Incidents in Computer Network. https://doi.org/10.5772/intechopen.71102
  32. Massarczyk, R., & Winzer, P. J. (2019, July 1). Influence of the Perceived Data Security, Credibility, Trust and Confidence on the Usage Frequency of Internet Services and the Provision of Security Measures. SPECTS 2019: Proceedings of the 2019 International Symposium on Performance Evaluation of Computer and Telecommunication Systems, 8823527. https://doi.org/10.23919/spects.2019.8823527
  33. Measuring Broadband America. (2023, February 22). Federal Communications Commission. https://www.fcc.gov/reports-research/reports/measuring-broadband-america/measuring-broadband-america-july-2012
  34. Measuring Fixed Broadband - Eighth Report. (2023, February 6). Federal Communications Commission. https://www.fcc.gov/reports-research/reports/measuring-broadband-america/measuring-fixed-broadband-eighth-report
  35. Mi, X., Feng, X., Liao, X., Liu, B., Wang, X., Qian, F., Li, Z., Alrwais, S., Sun, L., & Liu, Y. (2019, May 1). Resident Evil: Understanding Residential IP Proxy as a Dark Service. Proceedings of the IEEE Symposium on Security and Privacy, 00011. https://doi.org/10.1109/sp.2019.00011
  36. Mukti, A. R., & Dasmen, R. N. (2019, May 30). Prototipe Manajemen Bandwidth pada Jaringan Internet Hotel Harvani dengan Mikrotik RB 750r2. Jurnal Penelitian Ilmu Teknik (JPIT), 4(2), 87-92. https://doi.org/10.30591/jpit.v4i2.1322
  37. Nyarko-Boateng, O., Adekoya, A. F., & Weyori, B. A. (2019, March 1). Investigating QoS and Performance of Received Signal Strength Indicator in Fiber Optics Broadband Data Communication. American Journal of Engineering and Applied Sciences, 12(3), 391-401. https://doi.org/10.3844/ajeassp.2019.391.401
  38. Pariag, D., & Brecht, T. (2017, January 1). Application Bandwidth and Flow Rates from 3 Trillion Flows Across 45 Carrier Networks. Springer Science+Business Media, 129-141. https://doi.org/10.1007/978-3-319-54328-4_10
  39. Ramayah, S. N. L. U. S. M. P. M. R. T. U. S. M. P. M. (2023, November 10). The Drivers of Broadband Internet in Malaysia. IEEE Xplore. https://ieeexplore.ieee.org/document/7808315/
  40. Redirecting DNS for Ads and Profit. (2023, January 7). International Computer Science Institute, Berkeley. https://www.icsi.berkeley.edu/pubs/networking/redirectingdnsforads11.pdf
  41. Ribeiro, B., Perra, N., & Baronchelli, A. (2013, October 21). Quantifying the effect of temporal resolution on time-varying networks. Nature Portfolio, 3(1). https://doi.org/10.1038/srep03006
  42. Sait, S. Y., Murthy, H. A., & Sivalingam, K. M. (2016, November 1). Organization-Level Control of Excessive Internet Downloads. IEEE Local Computer Network Conference (LCN), 38. https://doi.org/10.1109/lcn.2016.38
  43. Saqr, M. (2023, January 1). Temporal network analysis: Introduction, methods and detailed tutorial with R. Cornell University. https://doi.org/10.48550/arxiv.2307.12339
  44. Sharma, R., Richardson, M., Martins, G., & Feamster, N. (2023, January 1). Measuring the Prevalence of WiFi Bottlenecks in Home Access Networks. Cornell University. https://doi.org/10.48550/arxiv.2311.05499
  45. Sherstinsky, A. (2020, March 1). Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network. Elsevier BV, 404, 132306-132306. https://doi.org/10.1016/j.physd.2019.132306
  46. Song, W., Beshley, M., Przystupa, К., Beshley, H., Кочан, О., Pryslupskyi, A., Pieniak, D., & Su, J. (2020, March 14). A Software Deep Packet Inspection System for Network Traffic Analysis and Anomaly Detection. Multidisciplinary Digital Publishing Institute, 20(6), 1637-1637. https://doi.org/10.3390/s20061637
  47. Stanojevic, Z. S. B. F. E. B. R. (2023, November 10). Need, Want, Can Afford: Broadband Markets and the Behavior of Users. ACM Digital Library. https://dl.acm.org/doi/10.1145/2663716.2663753
  48. Staudemeyer, R. C., & Morris, E. R. (2019, January 1). Understanding LSTM -- a tutorial into Long Short-Term Memory Recurrent Neural Networks. Cornell University. https://doi.org/10.48550/arxiv.1909.09586
  49. Subektiningsih, S., Renaldi, R., & Ferdiansyah, P. (2022, January 1). Analisis Perbandingan Parameter QoS Standar TIPHON Pada Jaringan Nirkabel Dalam Penerapan Metode PCQ. Explore: Jurnal Penelitian dan Pengembangan IPTEK, 12(1), 57-57. https://doi.org/10.35200/explore.v12i1.527
  50. Suryanegara, M., Andriyanto, F., & Arifin, A. S. (2018, June 1). Lessons Learned from the Quality of Experience (QoE) Assessment of 4G Mobile Technology in Indonesia. Institute of Advanced Engineering and Science (IAES), 10(3), 1203-1203. https://doi.org/10.11591/ijeecs.v10.i3.pp1203-1211
  51. Tao, J., Sun, B., Zhu, W., Qu, S., Lingkun, C., Li, J., Li, G., Chong, W., Xiong, Y., & Zhou, J. (2022, January 1). The Deep learning model of upstream and downstream brain regions Based on Memory Generation-Consolidation-Loss, Synaptic Strength Rebalance and mnemonic spiral. Cornell University. https://doi.org/10.48550/arXiv.2203.
  52. Tilaye, G., & Gojeh, L. A. (2020, January 1). Use of Access Control List Application for Bandwidth Management among Selected Public Higher Education Institutions in Ethiopia. Computers in Science and Technology, 8(1), 24-35. https://doi.org/10.13189/csit.2020.080103
  53. Varriale, V., Cammarano, A., Michelino, F., & Caputo, M. (2024, June 1). The role of digital technologies in production systems for achieving sustainable development goals. Elsevier BV, 47, 87-104. https://doi.org/10.1016/j.spc.2024.03.035
  54. Waczyńska, J., Martelli, E., Vallecorsa, S., Karavakis, E., & Cass, T. (2021, January 1). Convolutional LSTM models to estimate network traffic. EDP Sciences, 251, 02050-02050. https://doi.org/10.1051/epjconf/202125102050
  55. Wang, Y., Gui, G., Gacanin, H., Ohtsuki, T., Dobre, O. A., & Poor, H. V. (2021, August 1). An Efficient Specific Emitter Identification Method Based on Complex-Valued Neural Networks and Network Compression.
  56. Yang, F., Liu, J., Zhang, R., & Yang, F. (2023, May 15). Diffusion characteristics classification framework for identification of diffusion source in complex networks. Public Library of Science, 18(5), e0285563-e0285563. https://doi.org/10.1371/journal.pone.0285563
  57. Ye, Y., Wang, Y., Liao, J., Chen, J., Zou, Y., Liu, Y., & Feng, C. (2022, July 22). Spatiotemporal Pattern Analysis of Land Use Functions in Contiguous Coastal Cities Based on Long-Term Time Series Remote Sensing Data: A Case Study of Bohai Sea Region, China. Multidisciplinary Digital Publishing Institute, 14(15), 3518-3518. https://doi.org/10.3390/rs14153518
  58. Yoon, S., Kim, M., & Lee, W. (2023, January 1). Long Short-Term Memory-Based Deep Learning Models for Screening Parkinson’s Disease Using Sequential Diagnostic Codes. Journal of Clinical Neurology, 19(3), 270-270. https://doi.org/10.3988/jcn.2022.0160
  59. Zhang, X., Zhang, R., & Wang, X. (2022, November 14). Visual SLAM Mapping Based on YOLOv5 in Dynamic Scenes. Multidisciplinary Digital Publishing Institute, 12(22), 11548-11548. https://doi.org/10.3390/app122211548
  60. Zhou, P., Chang, R. K. C., Gu, X., Fei, M., & Zhou, J. (2018, January 1). Magic Train: Design of Measurement Methods against Bandwidth Inflation Attacks. IEEE Transactions on Dependable and Secure Computing, 15(1), 98-111. https://doi.org/10.1109/tdsc.2015.2509984