Main Article Content

Abstract

This study investigates the application of a Brute Force algorithm optimized with Bubble Sort for new student admission selection. The Brute Force algorithm, while guaranteeing accurate results, suffers from exponential time complexity with increasing data size, posing a challenge for large applicant pools. To address this limitation, this research integrates Bubble Sort optimization to reduce the execution time complexity of the Brute Force algorithm. This study goes beyond solving the student admission selection problem; it explores optimizing the Brute Force algorithm by leveraging the simplicity and efficiency of Bubble Sort. This approach aims to determine the extent to which the Brute Force algorithm can be optimized for student selection, particularly regarding execution time complexity. The integration of Bubble Sort is hypothesized to significantly improve the performance of the Brute Force algorithm by reordering data before processing, thereby minimizing unnecessary comparisons. This paper presents a comparative analysis of execution times between the traditional Brute Force approach and the optimized version. Preliminary results indicate a substantial improvement in efficiency, suggesting that this hybrid approach could be a valuable solution for similar combinatorial problems with time complexity constraints. Further research could explore the applicability of this optimized algorithm in other domains where time complexity is a critical factor.

Keywords

Brute Force Algorithm, Bubble Sort, New Student Admission, Algorithm Optimization, Efficiency

Article Details

How to Cite
Arbansyah, A., Ilham, M. F. N., Suryawan, S. H., & Wirayuda, P. (2024). Application of Bubble Sort Optimization in New Student Admission Selection Using Brute Force Algorithm. TEPIAN, 5(2), 79–86. https://doi.org/10.51967/tepian.v5i2.3055

References

  1. Aini, Q., Pratama, A. M. P., & Yasmin, F. D. (2019). Supply Chain Performance Analysis With Supply Chain Operation Research And Analytical Hierarchy Process (Case Study of MSME Tempo Susu Malang). Poltanesa Bulletin, 23(1), 20-27.
  2. Anggreani, D., Wibawa, A. P., Purnawansyah, & Herman. (2020). Perbandingan Efisiensi Algoritma Sorting dalam Penggunaan Bandwidth [Comparison of Sorting Algorithm Efficiency in Bandwidth Usage]. ILKOM Jurnal Ilmiah, 12(2), 96-103. https://doi.org/10.33096/ilkom.v12i2.538.96-103
  3. Asdar, A. K. (2018). Ketidakwajaran Skor Seleksi Penerimaan Mahasiswa Baru [The Unfairness of New Student Admission Scores]. Jurnal Vijjacariya, 5(2), 1-16.
  4. Balogun, G. B., Abdulraheem, M., Sadiku, P. O., Taofeek, O. D., & Adewale, A. (2023). Halstead’s Complexity Measure of a Merge sort and Modified Merge sort Algorithms. Jambura Journal of Informatics, 5(2), 141-151. https://doi.org/10.37905/jji.v5i2.21995
  5. Basir, R. R. (2020). Analisis Kompleksitas Ruang dan Waktu terhadap Laju Pertumbuhan Algoritma Heap Sort, Insertion Sort, dan Merge dengan Pemrograman Java [Space and Time Complexity Analysis of Heap Sort, Insertion Sort, and Merge Algorithms with Java Programming]. STRING (Satuan Tulisan Riset dan Inovasi Teknologi, 5(2), 109-118.
  6. Chen, X. (2022). A Comparison of Greedy Algorithm and Dynamic Programming Algorithm. SHS Web of Conferences, 144, 03009. https://doi.org/10.1051/shsconf/202214403009
  7. Fauzan, M., Ilham, N., & Saputra, A. (2023). Seleksi Penerimaan Mahasiswa Baru dengan Metode Pemecahan Masalah Algoritma Greedy Menggunakan Python [Selection of New Student Admission with Greedy Algorithm Problem Solving Method Using Python]. JURTI, 7(1), 32-38.
  8. Gunawan, I., & Tambunan, H. S. (2019). Penggunaan Algoritma Sorting Bubble Sort untuk Penentuan Nilai Prestasi Siswa [Use of Bubble Sort Algorithm for Determining Student Achievement Scores]. Jurnal Sistem Informasi, 8(2), 296-304.
  9. Hariski, F., Triayudi, A., & Soepriyono, G. (2023). Komparasi Metode Weighted Product (WP) dan Simple Additive Weighting (SAW) pada Sistem Pendukung Keputusan dalam Menentukan Pembangunan Infrastruktur Kelurahan. Journal of Computer System and Informatics (JoSYC), 4(3), 701-709. https://doi.org/10.47065/josyc.v4i3.3520
  10. Kamalov, F., Santandreu Calonge, D., & Gurrib, I. (2023). New Era of Artificial Intelligence in Education: Towards a Sustainable Multifaceted Revolution. Sustainability (Switzerland), 15(16), 27. https://doi.org/10.3390/su151612451
  11. Rizvi, D. Q., Rai, H., & Jaiswal, R. (2024). Sorting Algorithms in Focus: A Critical Examination of Sorting Algorithm Performance.
  12. Sari, N., Gunawan, W. A., Sari, P. K., Zikri, I., & Syahputra, A. (2022). Analisis Algoritma Bubble Sort Secara Ascending dan Descending serta Implementasinya Menggunakan Bahasa Pemrograman Java [Analysis of Bubble Sort Algorithm in Ascending and Descending Order and Its Implementation Using Java Programming Language]. ABDI JURNAL, 3(1), 16-23.
  13. Siddiq Sumi, A., Purnawansyah, & Syafie, L. (2018). Analisa Penerapan Algoritma Brute Force dalam Pencocokan String [Analysis of Brute Force Algorithm Application in String Matching]. Prosiding Seminar Nasional Ilmu Komputer dan Teknologi Informasi, 3(2), 88-92.
  14. Soleh, M. ibnu. (2023). Use of Big Data in Education Management: Building Data-Powered Decision Making. Promis, 4(2), 113-138. https://doi.org/10.58410/promis.v4i2.735
  15. Sunandar, E. (2021). Implementation of Bubble Sort Algorithm on 2 Fruit Models of Data Selection Using The Java Program Language. PETIR, 14(2), 159-169. https://doi.org/10.33322/petir.v14i2.946
  16. Suraya, M. (2024). Algoritma Pemograman: Kunci Efisiensi dalam Pengelolaan Data Besar [Programming Algorithm: Key to Efficiency in Big Data Management]. Jurnal Pendidikan Berkarakter, 2(1), 308-314.
  17. Thomas, P. (2023). Enhanced Efficiency in Sorting: Unveiling the Optimized Bubble Sort Algorithm. J Robot Auto Res, 4(3), 424-428.
  18. Vierdansyah, D. Z., Al Ghafiqi, G., Dwi Putra, M. T., & Pradeka, D. (2023). Comparison Analysis of Bubble Sort and Insertion Sort Algorithm on the Selection of a Shop According to the Criteria. Journal of Computer Engineering, Electronics and Information Technology, 2(1), 39-52. https://doi.org/10.17509/coelite.v2i1.57091