Air Pollution Assessment of Samarinda Using the C4.5 Algorithm

Authors

  • Anton Prafanto Universitas Mulawarman
  • Indah Fitri Astuti
  • Ummi Salamah Mulawarman University
  • Fahrul Agus Mulawarman University
  • Awang Harsa Kridalaksana Mulawarman University
  • Vina Zahrotun Kamila Mulawarman University

DOI:

https://doi.org/10.51967/tanesa.v24i2.2946

Keywords:

ESP32, Air quality, C4.5 Algorithm, Internet of Things, Classifying air quality

Abstract

The degradation of air quality in numerous Indonesian cities is attributed to the swift proliferation of motorised vehicles, rapid population growth, and inadequate green spaces. Samarinda, the capital of East Kalimantan province, is plagued by high levels of pollution resulting from heavy vehicle exhaust emissions. The provision of accurate air quality information can mitigate respiratory issues. However, the public does not have access to air quality information due to the high cost of air quality measuring devices. Therefore, an Internet of Things (IoT)-based air pollution monitoring system using ESP32 is needed to provide interactive and real-time information. This study tested the C4.5 algorithm to classify air quality data based on six measurement parameters: PM10, PM2.5, CO, O3, and NO2. PM10 and PM2.5 particles are the primary pollutants that significantly impact human health. The World Health Organization (WHO) has set an annual quality standard value of 20μg/m3 for PM10 and 10μg/m3 for PM2.5. Carbon Monoxide (CO) can reduce the blood's ability to carry oxygen, which can affect the function of vital organs such as the heart and brain. Ozone (O3) on the Earth's surface is a harmful pollutant that can damage the lungs and other respiratory systems. Nitrogen dioxide (NO2) can cause lung inflammation and lower immunity to infections, such as influenza and pneumonia. This study uses the C4.5 algorithm to classify air quality data based on these parameters, which are important for determining air quality. The results show that air quality is divided into two types: good and moderate, with different proportions each day. The C4.5 algorithm achieved a success rate of 99.5074% and a failure rate of 0.4926% when processing air quality data. It was effective in classifying air quality and processing data. An Internet of Things (IoT)-based air pollution monitoring system using ESP32 is needed to provide interactive and real-time information to the public.

References

Abidin, J., & Artauli Hasibuan, F. (2019). Pengaruh Dampak Pencemaran Udara Terhadap Kesehatan Untuk Menambah Pemahaman Masyarakat Awam Tentang Bahaya Dari Polusi Udara. Prosiding Seminar Nasional Fisika Universitas Riau IV (SNFUR-4), September, 1–7.

Agista, P., Gusdini, N., & Maharani, M. (2020). Analisis Kualitas Udara Dengan Indeks Standar Pencemar Udara (Ispu) Dan Sebaran Kadar Polutannya Di Provinsi Dki Jakarta. Sustainable Environmental and Optimizing Industry Journal, 2(2), 39–57. https://doi.org/10.36441/seoi.v2i2.491

Damayunita, A., Fuadi, R. S., & Juliane, C. (2022). Comparative Analysis of Naive Bayes, K-Nearest Neighbors (KNN), and Support Vector Machine (SVM) Algorithms for Classification of Heart Disease Patients. Jurnal Online Informatika, 7(2), 219–225. https://doi.org/10.15575/join.v7i2.919

Dobrzyniewski, D., Szulczyński, B., & Gębicki, J. (2022). Application of a Gas Sensor Array to Effectiveness Monitoring of Air Contaminated with Toluene Vapors Absorption Process. Journal of Ecological Engineering, 23(10), 269–282. https://doi.org/10.12911/22998993/152427

Febriani, S., & Sulistiani, H. (2021). Analisis Data Hasil Diagnosa Untuk Klasifikasi Gangguan Kepribadian Menggunakan Algoritma C4.5. 89Jurnal Teknologi Dan Sistem Informasi (JTSI), 2(4), 89–95.

Feng, H., & Zhang, X. (2023). A novel encoder-decoder model based on Autoformer for air quality index prediction. PLoS ONE, 18(4 APRIL), 1–18. https://doi.org/10.1371/journal.pone.0284293

Greenstone, M., & Fan, Q. (Claire). (2019). Kualitas udara Indonesia yang memburuk dan dampaknya terhadap harapan hidup. Air Quality Life Index, 1–10. https://aqli.epic.uchicago.edu/wp-content/uploads/2019/03/Indonesia.Indonesian.pdf

Hidayat, M. A., & Noor, A. (2020). Pengaruh Pertumbuhan Ekonomi Terhadap Alih Fungsi Lahan di Kota Samarinda. Inovasi, 16(2), 10. http://journal.feb.unmul.ac.id/index.php/INOVASI/article/view/8256

IBM. (n.d.). What is a Decision Tree | IBM. In www.ibm.com. https://www.ibm.com/topics/decision-trees

Marlina, D., & Bakri, M. (2021). Penerapan Data Mining Untuk Memprediksi Transaksi Nasabah Dengan Algoritma C4.5. Jurnal Teknologi Dan Sistem Informasi (JTSI), 2(1), 23–28.

Rahmawati, D. S., & Khairina, R. L. (2021). Pengaruh Kualitas Udara Dalam Ruangan Bagi Performa Akademik Pelajar: Sebuah Tinjauan Literatur. Js (Jurnal Sekolah), 5(1), 34. https://doi.org/10.24114/js.v5i1.22703

Sari, R. P., & Mayasari, D. (2020). Penatalaksanaan Holistik Penyakit Paru Obstruktif Kronik pada Lansia dengan Riwayat Merokok dan Paparan Polusi Udara. Medula, 10(2), 257–266.

Syihabuddin Azmil Umri, S. (2021). Analisis Dan Komparasi Algoritma Klasifikasi Dalam Indeks Pencemaran Udara Di Dki Jakarta. JIKO (Jurnal Informatika Dan Komputer), 4(2), 98–104. https://doi.org/10.33387/jiko.v4i2.2871

United States Environmental Protection Agency. (2018). Technical Assistance Document for the Reporting of Daily Air Quality – the Air Quality Index (AQI). Environmental Protection, 22. https://airnowtest.epa.gov/sites/default/files/2018-05/aqi-technical-assistance-document-may2016.pdf

Yuan, L., Qiang, L., Di, C., & Weizhi, L. (2023). Research on the strategy of locating abnormal data in internet of things management platform based on improved modified particle swarm optimization convolutional neural network algorithm. The Journal of Engineering, 2023(4). https://doi.org/10.1049/tje2.12263

Downloads

Published

2023-12-31

How to Cite

Prafanto, A., Astuti, I. F., Salamah, U., Agus, F., Kridalaksana, A. H., & Kamila, V. Z. . (2023). Air Pollution Assessment of Samarinda Using the C4.5 Algorithm. Buletin Poltanesa, 24(2), 235–241. https://doi.org/10.51967/tanesa.v24i2.2946

Issue

Section

Engineering