Main Article Content

Abstract

Global warming is a phenomenon of increasing global temperature of the earth from year to year due to the greenhouse effect that contains greenhouse gases (GHG) one of which is carbon dioxide (CO2), thereby increasing the absorption of heat released by the earth into the atmosphere, forests have a contribution as a provider of environmental services as an absorber of carbon dioxide (CO2). Hutan Pendidikan Fahutan Unmul (HPFU) is an area with forest status in Samarinda and is currently still dominated by land cover in the form of young secondary forest. this study was conducted to estimate the C reserves stored in the soil under the young secondary forest cover, determine its contribution to the total C reserves in the young secondary forest and estimate the potential of the total C reserves in the soil in HPFU.  PUP is made measuring 20 m x 20 m on secondary forest cover with gentle slope (L2) to slightly steep (L3) at the top, middle, and bottom of the slope. In each slope do repetition as much as 3 times. In each PUP, a whole soil sample was taken using a sample ring and the soil was disturbed using a hoe at 3 depths,namely : 0-10 cm, 10-20 cm, and 20-30 cm. young secondary forest cover dominates the HPFU area on a gentle to rather steep slope. the C content of soil as deep as 30 cm in the sloping Slope area is 75.29 tons/ha with a total reserve of C is 5,499.80 tons and in a rather steep slope area is 54.69 tons/ha with a total reserve of C is 3,822. 83 tons

Keywords

soil C-stored secondary forest slope

Article Details

References

  1. Abdullah, U.H., Sufardi, S., Syafruddin, S., dan Arabia, T. (2022). Soil organic carbon of grassland and bush forest on dryland in Aceh Besar District, Indonesia. Biodiversitas 23 (5): 2594-2600. DOI: 10.13057/biodiv/d230541.
  2. Astiani, D., Mujiman, M., Rafiastanto, A. (2017). Forest type diversity on carbon stocks: Cases of recent land cover conditions of tropical lowland, swamp, and peatland forests in West Kalimantan, Indonesia. Biodiversitas 18 (1): 137-144. DOI: 10.13057/biodiv/d180120
  3. Astuti, R., Wasis, B., & Hilwan, I. (2020). Potensi cadangan karbon pada lahan rehabilitasi di kabupaten gunung mas, kalimantan tengah. Media Konservasi, 25(2), 140-148. https://doi.org/10.29244/medkon.25.2.140-148
  4. Ewetola, E., Oyediran, G., Owoade, F., & Ojo, O. (2010). Variations in soil physical properties along toposequence of an alfisol in Southern Guinea Savanna of Nigeria. International Journal of Agriculture, Environment and Biotechnology, 3, 303-305
  5. Hartati, W., Sudarmadji, T. (2016). Relationship between soil texture and soil organic matter content on mined-out lands in Berau, East Kalimantan, Indonesia. Nusantara Biosci 8 (1): 83-88. DOI: 10.13057/nusbiosci/n080115
  6. Hartati, W., Suhadiman, A., Sudarmadji, T., dan Sulistiyo, E.A. (2021). Estimasi cadangan karbon pada tumbuhan bawah dan serasah di KHDTK HPFU Samarinda. Ulin - J Hut Trop 5 (2) : 63-72.
  7. Hartati, W. dan Sudarmadji, T. (2022). The dynamics of soil carbon in revegetated post-coal mining sites: A case study in Berau, East Kalimantan, Indonesia. Biodiversitas 23 (10): 4984-4991. DOI: 10.13057/biodiv/d231004
  8. Heriyanto, N., Priatna, D., & Samsoedin, I. (2022). Keanekaragaman tumbuhan dan kandungan karbon di Hutan Tembawang Alak, Sintang, Kalimantan Barat. Buletin Kebun Raya, 25(3), 142-155. https://doi.org/10.55981/bkr.2022.723
  9. Heriyanto, N., Samsoedin, I., & Kartawinata, K. (2019). Tree species diversity, structural characteristics and carbon stock in a one-hectare plot of the protection forest area in West Lampung Regency, Indonesia. Reinwardtia, 18(1). https://doi.org/10.14203/reinwardtia.v18i1.3574
  10. Khan, F., Hayat, Z., Ahmad, W., Ramzan, M., Shah, Z., Sharif, M., Mian, I., & Hanif, M. (2013). Effect of slope position on physico-chemical properties of eroded soil. Soil in the Environment, 32, 22-28.
  11. Kusumo, B.H., Sukartono, Bustan. (2018). The rapid measurement of soil carbon stock using near-infrared technology. IOP Conf Ser: Earth Environ Sci 129 (1): 012023. DOI: 10.1088/1755- 1315/129/1/012023
  12. Li, W., Dickinson, R., Fu, R., Niu, G., Yang, Z., & Canadell, J. (2007). Future precipitation changes and their implications for tropical peatlands. Geophysical Research Letters, 34(1). https://doi.org/10.1029/2006gl028364
  13. Naharuddin, N., Sari, I., Harijanto, H., & Wahid, A. (2020). Sifat fisik tanah pada lahan agroforestri dan hutan lahan kering sekunder di Sub DAS WUNO, DAS PALU. Jurnal Pertanian Terpadu, 8(2), 189-200. https://doi.org/10.36084/jpt..v8i2.251
  14. Nehren, U., Wicaksono, P. 2018. Mapping soil carbon stocks in an oceanic mangrove ecosystem in Karimunjawa Islands, Indonesia. Estuar Coast Shelf Sci 214: 185-193. DOI: 10.1016/j.ecss.2018.09.022
  15. Sumarlin, D., Gusmayanti, E., & Anshari, G. (2021). Analisis perubahan penggunaan lahan dan cadangan karbon sebagai indikator degradasi lingkungan di Kecamatan Sandai Kabupaten Ketapang. Jurnal Ilmu Lingkungan, 19(3), 576-581. https://doi.org/10.14710/jil.19.3.576-581
  16. Sunaryanto, Karyati dan Syafrudin, M. (2016). Biomassa dan cadangan karbon tumbuhan bawah pada tiga penutupan vegetasi berbeda di Hutan Pendidikan Fakultas Kehutanan Universitas Mulawarman
  17. Valentino, F., Karyati dan Syafrudin, M. (2016). Biomassa dan cadangan karbon tiga jenis tumbuhan herba dari Famili Asteraceae. Prosiding Seminar Nasional Silvikultur ke IV dan Kongres Masyarakat Silvikultur Indonesia. Pusat Pengkajian Perubahan Iklim, Universitas Mulawarman. Samarinda.
  18. Widhanarto, G.O., Purwanto, R.H., Maryudi, A., Senawi. (2016). Assessing carbon pool of forest plantation to support REDD+ implementation in Indonesia. AIP Conf Proc 1755 (1): 130008. DOI: 10.1063/1.4958552.
  19. Zhu, H., Li, H., Liang, C., Chang, X., Wei, X., & Zhao, X. (2022). Spatial variation in soil physico-chemical properties along slope position in a small agricultural watershed scale. Agronomy. https://doi.org/10.3390/agronomy12102457.