Identifikasi Serangan Low-Rate DDOS Berbasis Deep Learning

Authors

  • Wahyuni Teknik Informatika, STMIK Widya Cipta Dharma
  • Pitrasacha Adytia Sistem Informasi, STMIK Widya Cipta Dharma, Samarinda

DOI:

https://doi.org/10.51967/tanesa.v23i2.1737

Keywords:

Low-Rate DDOS, Deep Learning, RNN LSTM.

Abstract

LowRate DDoS (LDDoS) is a variation of DDoS attack that sends fewer packets than conventional DDoS attacks. However, by sending a smaller number of packets and using a unique attack period, low-rate DDoS is very effective in reducing the quality of an internet network-based service due to full access. On the other hand, the low-rate DDoS with its nature also makes it difficult to detect because it looks more mixed with normal user access. The Deep Learning model that will be used in this research is the RNN LSTM (Long Short Term Memory) model. LSTM is a neural network architecture which is good enough to process sequential data. This model is better than the simple RNN model. The research method is adapted to the SKKNI  No. 299 of 2020. However, this research will be carried out until the model development stage, namely the evaluation model. From the results of the research that has been done, it can be concluded that the RNN LSTM model can be used to classify low-rate DDOS attacks using feature selection. The accuracy of the training data on the validation data is around 98% and after visualizing the data for accuracy and loss, it can be concluded that the model is quite good, aka there is no underfitting or overfitting. While the accuracy obtained for testing data is 0.97%.

References

Aljuhani, A. (2021). Machine Learning Approaches for Combating Distributes Denial of Service Attacks in Modern Networking Environments. IEEE Access.

Darryl, P., & Subali, M. (2021). Perbandingan Algoritma SVM dan Algoritma KNN dalam Menghasilkan Klasifikasi DDoS dan Benign. Jurnal Ilmiah KOMPUTASI, 20(https://doi.org/http://dx.doi.org/10.32409/jikstik.20.4.2799), 491-500.

Firmansyah, M. R., & al, e. (2020). Klasifikasi Kalimat Ilmiah Menggunakan Recurent Neural Network. Industrial Research Workshop and National Seminar.

Gupta, B. B., & Dahiya, A. (2021). Distributed Denial of Service (DDoS) Attacks. CRC Press.

Junaedi, R., & Fratelli. (2019). Deteksi serangan DDOS (Distributed Denial of Service) di cloud computing dengan metode rule base.

Li, D., & Li, Z. (2018). A Lightweight Traffic Anomaly Detection Model in SDN Based on Decision Tree. Atlantis Press: Advances in Computer Science Research.

Nugraha, F. A., & al, e. (2020). Analisis Sentimen Terhadap Pembatasan Sosial Menggunakan Deep Learning. Bandung: Kreatif Industri Nusantara.

Nugroho, R. (2022). Foreign Policy (Implementasi, Evaluasi, dan Manajemen Kebijakan). PT. Elex Media Komputindo.

Perez-Diaz, J. A., & all, e. (2020). A Flexible SDN-Based Architecture for Identifying and Mitigating Low Rate DDoS Attacks Using Machine Learning. IEEE Access.

Puspita, H., & al, e. (2022). Pengantar Teknologi Informasi. Sukabumi: penerbithaura.com.

Raharjo, B. (2022). Deep Learning dengan Python. Semarang: Yayasan Prima Agus Teknik.

Rahmatullah, F. (2022). DETEKSI DISTRIBUTED DENIAL OF SERVICE (DDOS) DALAM JARINGAN SOFTWARE DEFINED NETWORK DENGAN METODE SUPPORT VECTOR MACHINE. Yogyakarta: UPN "Veteran".

Riadi, I., Umar, R., & Aini, F. D. (2019). Analisis Perbandingan Detecsion Traffic Anomaly Dengan Metode Naïve Bayes dan Support Vector Machine (SVM). ILKOM Jurnal Ilmiah.

Sarno, R., & al, e. (2022). Machine Learning Deep Learning Konsep dan Pemrograman Python. Penerbit: ANDI.

Shandi, M. G., & al, e. (2020). Penerapan Long Short Term Memory untuk Memprediksi Flight Delay pada Penerbangan Komersial. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi).

Sudar, K. M., & Deepalakshmi, P. (2022). Flow Based Detection and Mitigation of LowRate DDOS Attack in SDN Environtment Using Machine Learning Techniques. IOT and Analytics for Sensor Networks, Lecture Notes in Networks and System, 193.

Sultana, N., & al, e. (2018). Survey on SDN based Network intrusion detection system using machine learning approaches. Springer Science + Bussiness media.

Swe, M. Y., & al, e. (2021). A Slow DDOS Attack Detection Mechanism using Feature Weighing and Ranking. Proceedings of the 11th Annual International Conference on Industrial Engineering and Operations Management (p. 4500). Singapore: IEOM Society International.

Valdinos, I. A., Perez-Diaz, J. A., Choo, K.-K. R., & Botero, J. F. (2021). Emerging DDOS attack detection and mitigation strategies in software-defined network: Taxonomy, Challenges and Future Directions. ELSEVIER:Journal of Network and Computer Applications, 187.

Valdinos, I. A., Perez-Diaz, Y. A., Cho, K.-K. R., & Botero, J. F. (2021). Emerging DDOS attack detection and mitigation strategies in software-defined network: Taxonomy, challenges dan future directions. ELSEVIER:Journal of Network and Computer Applications.

Zhijun, W., & al, e. (2020). Low-Rate DoS Attacks, Detection, Defense, and Challenges: A Survey. IEEE Access, 43920 - 43943.

Downloads

Published

2022-12-27

How to Cite

Wahyuni, W., & Adytia, P. (2022). Identifikasi Serangan Low-Rate DDOS Berbasis Deep Learning. Buletin Poltanesa, 23(2), 808–815. https://doi.org/10.51967/tanesa.v23i2.1737

Issue

Section

Software Engineering & Informatics