Segmentasi Lemak Visceral dan Kanker Paru-paru Menggunakan Deep Learning

Authors

  • Ifnu Abdul Aziz Abdullah Magister Ilmu Komputer, Universitas Nusa Mandiri
  • Rifki Sadikin Magister Ilmu Komputer Universitas Nusa Mandiri
  • Yan Rianto Magister Ilmu Komputer, Universitas Nusa Mandiri
  • Dedi Priansyah Magister Ilmu Komputer Universitas Nusa Mandiri

DOI:

https://doi.org/10.51967/tanesa.v23i2.1354

Keywords:

Segmentasi, Deep Learning, Lemak Perut, Kanker Paru-paru

Abstract

Lemak Visceral memberikan dampak yang sangat besar terhadap beberapa penyakit dan salah satunya Kanker paru-paru penyebab utama kematian, Kondisi ini memberikan pengaruh besar dalam dunia kesehatan terhadap permasalahan Lemak visceral dan kanker paru-paru Computer vision menghembalangkan penelitian dari permasalahan yang besar ini computer vision ingin melihat keakuratan penelitian, dengan dataset yang telah di tentukan dengan ini peneliti menggunakan metode deep learning dan di dukung dengan metode Segmentasi-CNN, Segmentation & VFI Calculation. Metode tersebut mampu menampilkan gambar yang tersegmentasi dengan detail dari mengubah warna satu dimensi dan dua dimensi sehingga akan memberikan keakuratan segmentasi, lemak yang telah tersegmentasi daerah gambar lemak dan garis tepinya pada Lemak visceral dan kanker paru-paru memisahkan lemak dan kanker dengan jumlah pixel putih lemak lemah dengan ration area akurat dan Memiliki pixel yang tinggi dan tepat dalam pemrosesan pixel.

References

Anamisa, D. R. (2015). Aplikasi Segmentasi Objek Menggunakan Cellular Neural Network ( Cnn ). Networking Engineering Research Operation, 1(3), 157–163. https://nero.trunojoyo.ac.id/index.php/nero/article/view/40

CARLETTI, M., CRISTANI, M., CAVEDON, V., MILANESE, C., ZANCANARO, C., & GIACHETTI, A. (2018). Estimating Body Fat from Depth Images: Hand-Crafted Features vs Convolutional Neural Networks. 201–206. https://doi.org/10.15221/18.201

Coudray, N., Ocampo, P. S., Sakellaropoulos, T., Narula, N., Snuderl, M., Fenyö, D., Moreira, A. L., Razavian, N., & Tsirigos, A. (2018). Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning. Nature Medicine, 24(10), 1559–1567. https://doi.org/10.1038/s41591-018-0177-5

Ghatas, M. P., Lester, R. M., Khan, M. R., & Gorgey, A. S. (2018). Semi-automated segmentation of magnetic resonance images for thigh skeletal muscle and fat using threshold technique after spinal cord injury. Neural Regeneration Research, 13(10), 1787–1795. https://doi.org/10.4103/1673-5374.238623

Grainger, A. T., Krishnaraj, A., Quinones, M. H., Tustison, N. J., Epstein, S., Fuller, D., Jha, A., Allman, K. L., & Shi, W. (2021). Deep Learning-based Quantification of Abdominal Subcutaneous and Visceral Fat Volume on CT Images. Academic Radiology, 28(11), 1481–1487. https://doi.org/10.1016/j.acra.2020.07.010

Kumaseh, M. R., Latumakulita, L., Nainggolan, N., Kunci, K., Ikan, M., & Segmentasi, C. (n.d.). METODEambang batas.

Lin, C. (2015). Teknik penekanan lemak dalam pencitraan resonansi magnetik payudara : perbandingan kritis dan seni. 37–49.

Liu, X., Li, K. W., Yang, R., & Geng, L. S. (2021). Review of Deep Learning Based Automatic Segmentation for Lung Cancer Radiotherapy. Frontiers in Oncology, 11, 1–16. https://doi.org/10.3389/fonc.2021.717039

Minami, S., Ihara, S., Tanaka, T., & Komuta, K. (2020). Artikel asli Sarkopenia dan Adipositas Visceral Tidak Mempengaruhi Khasiat Pasien Dengan Kanker Paru Non-Small Cell Lanjutan. 11(1), 9–22.

Moitra, D., & Kr. Mandal, R. (2020). Classification of non-small cell lung cancer using one-dimensional convolutional neural network. Expert Systems with Applications, 159, 113564. https://doi.org/10.1016/j.eswa.2020.113564

Nattenmüller, J., Wochner, R., Muley, T., Steins, M., Teucher, B., Wiskemann, J., Kauczor, H., Oliver, M., Toraks, D. O., & Heidelberg, U. (2017). Dampak Prognostik Distribusi Otot dan Lemak yang Diukur CT sebelum dan sesudah Kemoterapi Lini Pertama pada Pasien Kanker Paru Abstrak pengantar. 1–18. https://doi.org/10.1371/jurnal.pon.0169136

Nault, J. C., Pigneur, F., Nelson, A. C., Costentin, C., Tselikas, L., Katsahian, S., Diao, G., Laurent, A., Mallat, A., Duvoux, C., Luciani, A., & Decaens, T. (2015). Visceral fat area predicts survival in patients with advanced hepatocellular carcinoma treated with tyrosine kinase inhibitors. Digestive and Liver Disease, 47(10), 869–876. https://doi.org/10.1016/j.dld.2015.07.001

Orgiu, S., Lafortuna, C. L., Rastelli, F., Cadioli, M., Falini, A., & Rizzo, G. (2016). Automatic muscle and fat segmentation in the thigh from T1-Weighted MRI. Journal of Magnetic Resonance Imaging, 43(3), 601–610. https://doi.org/10.1002/jmri.25031

Pengenal, A. T. G., Tustison, N. J., Qing, K., Roy, R., Berr, S. S., Shi, W. Bin, Biokimia, D., Molekuler, G., Medis, P., Virginia, U., & Serikat, A. (2018). Kuantifikasi lemak perut berbasis pembelajaran mendalam pada gambar resonansi magnetik Abstrak. September, 1–16.

Strand, R., Malmberg, F., Johansson, L., Lind, L., Sundbom, M., Ahlström, H., & Kullberg, J. (2017). A concept for holistic whole body MRI data analysis, Imiomics. PLoS ONE, 12(2), 1–17. https://doi.org/10.1371/journal.pone.0169966

Syari, F. R., Hendrianingtyas, M., & Retnoningrum, D. (2019). Hubungan Lingkar Pinggang Dan Visceral Fat Dengan. 8(2), 701–712.

Wang, Y., Qiu, Y., Thai, T., Moore, K., Liu, H., & Zheng, B. (2017a). A two-step convolutional neural network based computer-aided detection scheme for automatically segmenting adipose tissue volume depicting on CT images. Computer Methods and Programs in Biomedicine, 144, 97–104. https://doi.org/10.1016/j.cmpb.2017.03.017

Wang, Y., Qiu, Y., Thai, T., Moore, K., Liu, H., & Zheng, B. (2017b). Applying a deep learning based CAD scheme to segment and quantify visceral and subcutaneous fat areas from CT images. Medical Imaging 2017: Computer-Aided Diagnosis, 10134, 101343G. https://doi.org/10.1117/12.2250360

Wang, Z., Meng, Y., Weng, F., Chen, Y., Lu, F., Liu, X., Hou, M., & Zhang, J. (2020). An Effective CNN Method for Fully Automated Segmenting Subcutaneous and Visceral Adipose Tissue on CT Scans. Annals of Biomedical Engineering, 48(1), 312–328. https://doi.org/10.1007/s10439-019-02349-3

Xu, Y., Hosny, A., Zeleznik, R., Parmar, C., Coroller, T., Franco, I., Mak, R. H., & Aerts, H. J. W. L. (2019). Deep learning predicts lung cancer treatment response from serial medical imaging. Clinical Cancer Research, 25(11), 3266–3275. https://doi.org/10.1158/1078-0432.CCR-18-2495

Downloads

Published

2022-12-27

How to Cite

Abdullah, I. A. A. ., Sadikin, R. ., Rianto, Y. ., & Priansyah, D. . (2022). Segmentasi Lemak Visceral dan Kanker Paru-paru Menggunakan Deep Learning. Buletin Poltanesa, 23(2), 649–654. https://doi.org/10.51967/tanesa.v23i2.1354

Issue

Section

Health Science