Main Article Content
Abstract
Cloud storage services can create an object storage bucket to store our pictures, among them the Cloud Storage FUSE, Scaleway, S3 bucket, Firebase, etc. intelligent IoT systems generate vast amounts of multi-source industrial data, which necessitate a large amount of storage and processing power to enable real-time data processing and analysis. Cloud computing can be intricately linked into intelligent IIoT systems due to its strong computational and storage capabilities. Cloud Storage for Object Detection using ESP32-CAM. Create a workable solution that supports distributed storage bucket and implement it in a real-world setting. Implement the entire system as an addition to the well-known IoT cloud storage and run multiple experiments to evaluate its functionality in scenarios with varying setups and system. The target objects that are used as data sets are the ESP8266, Wemos D1, and Arduino Uno. Figuring out the ideal parameters for training the FOMO (First Object, More Object) model and then putting it into practice. It was necessary to find a balance between learning rate and accuracy, on the other hand, to maintain the highest possible accuracy in the identification of the microcontroller object to minimise the number of false positive reports. Find the value learning rate effective to this object is 0.01 with F1 score 98.7% and accuracy score 89.58%.
Keywords
Article Details
Copyright (c) 2024 TEPIAN
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- Abdellatif, M. M., Elshabasy, N. H., Elashmawy, A. E., & AbdelRaheem, M. (2023). A low cost IoT-based Arabic license plate recognition model for smart parking systems. Ain Shams Engineering Journal, 14(6). https://doi.org/10.1016/j.asej.2023.102178
- Akshatha, P. S., & Dilip Kumar, S. M. (2023). MQTT and blockchain sharding: An approach to user-controlled data access with improved security and efficiency. Blockchain: Research and Applications, 4(4). https://doi.org/10.1016/j.bcra.2023.100158
- Alejandro, L. L., Gulpric, M. M., Lanon, C. J. F., MacAlalag, F. M. A., & Placio, R. M. A. (2023). ICFY (I Care For You): An IOT Based Fall Detection and Monitoring Device using ESP32-CAM and MPU 6050 Sensors. 2023 8th International Conference on Business and Industrial Research, ICBIR 2023 - Proceedings, 1009–1013. https://doi.org/10.1109/ICBIR57571.2023.10147586
- Bagchi, T., Mahapatra, A., Yadav, D., Mishra, D., Pandey, A., Chandrasekhar, P., & Kumar, A. (2022). Intelligent security system based on face recognition and IoT. Materials Today: Proceedings, 62, 2133–2137. https://doi.org/10.1016/j.matpr.2022.03.353
- Chen, F., Meng, F., Li, Z., Li, L., & Xiang, T. (2024). Public cloud object storage auditing: Design, implementation, and analysis. Journal of Parallel and Distributed Computing, 189. https://doi.org/10.1016/j.jpdc.2024.104870
- Elhattab, K., Abouelmehdi, K., & Elatar, S. (2023). New Model to Monitor Plant Growth Remotely using ESP32-CAM and Mobile Application. Proceedings - 10th International Conference on Wireless Networks and Mobile Communications, WINCOM 2023. https://doi.org/10.1109/WINCOM59760.2023.10322939
- Hammad, S. S., Iskandaryan, D., & Trilles, S. (2023). An unsupervised TinyML approach applied to the detection of urban noise anomalies under the smart cities environment. Internet of Things (Netherlands), 23. https://doi.org/10.1016/j.iot.2023.100848
- Hazarika, A., Poddar, S., Nasralla, M. M., & Rahaman, H. (2022). Area and energy efficient shift and accumulator unit for object detection in IoT applications. Alexandria Engineering Journal, 61(1), 795–809. https://doi.org/10.1016/j.aej.2021.04.099
- Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., & Adam, H. (2017). MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. http://arxiv.org/abs/1704.04861
- Kaur, A., Jadli, A., Sadhu, A., Goyal, S., Mehra, A., & Rahul. (2021). Cloud Based Surveillance using ESP32 CAM. International Conference on Intelligent Technology, System and Service for Internet of Everything, ITSS-IoE 2021. https://doi.org/10.1109/ITSS-IoE53029.2021.9615334
- Kurdi, H., & Thayananthan, V. (2021). Authentication mechanisms for IoT system based on distributed MQTT brokers: Review and challenges. Procedia Computer Science, 194, 132–139. https://doi.org/10.1016/j.procs.2021.10.066
- Li, J., Wu, J., Jiang, L., & Li, J. (2024). Blockchain-based public auditing with deep reinforcement learning for cloud storage. Expert Systems with Applications, 242. https://doi.org/10.1016/j.eswa.2023.122764
- Liu, D., Ding, Y., Yu, G., Zhong, Z., & Song, Y. (2024). Privacy-preserving dynamic auditing for regenerating code-based storage in cloud-fog-assisted IIoT. Internet of Things (Netherlands), 25. https://doi.org/10.1016/j.iot.2024.101084
- Liu, Q., Zhang, X., Xue, J., Zhou, R., Wang, X., & Tang, W. (2023). Enabling blockchain-assisted certificateless public integrity checking for industrial cloud storage systems. Journal of Systems Architecture, 140. https://doi.org/10.1016/j.sysarc.2023.102898
- Liu, X., Zhang, T., Hu, N., Zhang, P., & Zhang, Y. (2020). The method of Internet of Things access and network communication based on MQTT. Computer Communications, 153, 169–176. https://doi.org/10.1016/j.comcom.2020.01.044
- Longo, E., & Redondi, A. E. C. (2023). Design and implementation of an advanced MQTT broker for distributed pub/sub scenarios. Computer Networks, 224. https://doi.org/10.1016/j.comnet.2023.109601
- Mirampalli, S., Wankar, R., & Srirama, S. N. (2024). Evaluating NiFi and MQTT based serverless data pipelines in fog computing environments. Future Generation Computer Systems, 150, 341–353. https://doi.org/10.1016/j.future.2023.09.014
- Novak, M., Doležal, P., Budík, O., Ptáček, L., Geyer, J., Davídková, M., & Prokýšek, M. (2024). Intelligent inspection probe for monitoring bark beetle activities using embedded IoT real-time object detection. In Engineering Science and Technology, an International Journal (Vol. 51). Elsevier B.V. https://doi.org/10.1016/j.jestch.2024.101637
- Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.-C. (2018). MobileNetV2: Inverted Residuals and Linear Bottlenecks. http://arxiv.org/abs/1801.04381
- Verma, K., Charan, G. S., Pande, A., Abdalla, Y. A., Marshiana, D., & Choubey, C. K. (2023). Internet Regulated ESP32 Cam Robot. 2023 7th International Conference On Computing, Communication, Control And Automation, ICCUBEA
References
Abdellatif, M. M., Elshabasy, N. H., Elashmawy, A. E., & AbdelRaheem, M. (2023). A low cost IoT-based Arabic license plate recognition model for smart parking systems. Ain Shams Engineering Journal, 14(6). https://doi.org/10.1016/j.asej.2023.102178
Akshatha, P. S., & Dilip Kumar, S. M. (2023). MQTT and blockchain sharding: An approach to user-controlled data access with improved security and efficiency. Blockchain: Research and Applications, 4(4). https://doi.org/10.1016/j.bcra.2023.100158
Alejandro, L. L., Gulpric, M. M., Lanon, C. J. F., MacAlalag, F. M. A., & Placio, R. M. A. (2023). ICFY (I Care For You): An IOT Based Fall Detection and Monitoring Device using ESP32-CAM and MPU 6050 Sensors. 2023 8th International Conference on Business and Industrial Research, ICBIR 2023 - Proceedings, 1009–1013. https://doi.org/10.1109/ICBIR57571.2023.10147586
Bagchi, T., Mahapatra, A., Yadav, D., Mishra, D., Pandey, A., Chandrasekhar, P., & Kumar, A. (2022). Intelligent security system based on face recognition and IoT. Materials Today: Proceedings, 62, 2133–2137. https://doi.org/10.1016/j.matpr.2022.03.353
Chen, F., Meng, F., Li, Z., Li, L., & Xiang, T. (2024). Public cloud object storage auditing: Design, implementation, and analysis. Journal of Parallel and Distributed Computing, 189. https://doi.org/10.1016/j.jpdc.2024.104870
Elhattab, K., Abouelmehdi, K., & Elatar, S. (2023). New Model to Monitor Plant Growth Remotely using ESP32-CAM and Mobile Application. Proceedings - 10th International Conference on Wireless Networks and Mobile Communications, WINCOM 2023. https://doi.org/10.1109/WINCOM59760.2023.10322939
Hammad, S. S., Iskandaryan, D., & Trilles, S. (2023). An unsupervised TinyML approach applied to the detection of urban noise anomalies under the smart cities environment. Internet of Things (Netherlands), 23. https://doi.org/10.1016/j.iot.2023.100848
Hazarika, A., Poddar, S., Nasralla, M. M., & Rahaman, H. (2022). Area and energy efficient shift and accumulator unit for object detection in IoT applications. Alexandria Engineering Journal, 61(1), 795–809. https://doi.org/10.1016/j.aej.2021.04.099
Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., & Adam, H. (2017). MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. http://arxiv.org/abs/1704.04861
Kaur, A., Jadli, A., Sadhu, A., Goyal, S., Mehra, A., & Rahul. (2021). Cloud Based Surveillance using ESP32 CAM. International Conference on Intelligent Technology, System and Service for Internet of Everything, ITSS-IoE 2021. https://doi.org/10.1109/ITSS-IoE53029.2021.9615334
Kurdi, H., & Thayananthan, V. (2021). Authentication mechanisms for IoT system based on distributed MQTT brokers: Review and challenges. Procedia Computer Science, 194, 132–139. https://doi.org/10.1016/j.procs.2021.10.066
Li, J., Wu, J., Jiang, L., & Li, J. (2024). Blockchain-based public auditing with deep reinforcement learning for cloud storage. Expert Systems with Applications, 242. https://doi.org/10.1016/j.eswa.2023.122764
Liu, D., Ding, Y., Yu, G., Zhong, Z., & Song, Y. (2024). Privacy-preserving dynamic auditing for regenerating code-based storage in cloud-fog-assisted IIoT. Internet of Things (Netherlands), 25. https://doi.org/10.1016/j.iot.2024.101084
Liu, Q., Zhang, X., Xue, J., Zhou, R., Wang, X., & Tang, W. (2023). Enabling blockchain-assisted certificateless public integrity checking for industrial cloud storage systems. Journal of Systems Architecture, 140. https://doi.org/10.1016/j.sysarc.2023.102898
Liu, X., Zhang, T., Hu, N., Zhang, P., & Zhang, Y. (2020). The method of Internet of Things access and network communication based on MQTT. Computer Communications, 153, 169–176. https://doi.org/10.1016/j.comcom.2020.01.044
Longo, E., & Redondi, A. E. C. (2023). Design and implementation of an advanced MQTT broker for distributed pub/sub scenarios. Computer Networks, 224. https://doi.org/10.1016/j.comnet.2023.109601
Mirampalli, S., Wankar, R., & Srirama, S. N. (2024). Evaluating NiFi and MQTT based serverless data pipelines in fog computing environments. Future Generation Computer Systems, 150, 341–353. https://doi.org/10.1016/j.future.2023.09.014
Novak, M., Doležal, P., Budík, O., Ptáček, L., Geyer, J., Davídková, M., & Prokýšek, M. (2024). Intelligent inspection probe for monitoring bark beetle activities using embedded IoT real-time object detection. In Engineering Science and Technology, an International Journal (Vol. 51). Elsevier B.V. https://doi.org/10.1016/j.jestch.2024.101637
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.-C. (2018). MobileNetV2: Inverted Residuals and Linear Bottlenecks. http://arxiv.org/abs/1801.04381
Verma, K., Charan, G. S., Pande, A., Abdalla, Y. A., Marshiana, D., & Choubey, C. K. (2023). Internet Regulated ESP32 Cam Robot. 2023 7th International Conference On Computing, Communication, Control And Automation, ICCUBEA