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Abstract— The goal of this study is to enhance the 
classification accuracy of fake bandwidth using a CNN 
model, leveraging network logs collected in real-time. For 
this research, the network logs from the Cyber Security 
Laboratory of the University of Technology Sarawak are 
used as a dataset for training the CNN model. The dataset 
consists of 20 days of continuous network activity logging, 
which results in over 500,000 data entries. According to 
the model evaluation results, the trained CNN model 
demonstrated high accuracy in classifying genuine 
bandwidth (Precision: 0.92, Recall: 0.95). Moreover, it 
achieved considerable success in detecting fake bandwidth 
(Precision: 0.89, Recall: 0.90) and the no heavy activity 
category (Precision: 0.98, Recall: 0.84). Analysis of Loss 
Over Epochs showed a dramatic decrease in loss during 
the training phase, with optimal convergence reached by 
epoch 2000. Identifying these characteristics enables 
monitoring systems to classify network data with high 
certainty, detecting bandwidth manipulation in expansive 
networks. Thus, this research aids the design of dynamic 
network monitoring systems that require minimal response 
time while maintaining high accuracy. 
 
Keywords— Convolutional Neural Network (CNN), Fake 
Bandwidth, Network Logs, Bandwidth Utilization 
 

I. INTRODUCTION 
 

The World is in an era where virtually all human 
interactions across different sectors require a stable 
Internet connection, which is used to facilitate countless 
activities (Dolgui, A et al., 2021). In an AI-powered world, 
without the use of the Internet, all work models involving 
software and applications would become nearly 
impossible, especially those requiring high connectivity 
(Giordano et al., 2022). The Internet is critical for software 
and applications, especially those providing essential 
services, to function effectively in today's digital 
environment (Sari, M et al., 2023). Many enterprise 
devices or network loads are always associated with high 
bandwidth usage (Shi, J. et al., 2024). On a broader 
spectrum, high as well as low levels of an enterprise may 
not be accurately depicted as the real user of the bandwidth 
based on certain activities (Oji et al., 2021). Exceptional 

situations can be found where network bandwidth is 
referred to as fake bandwidth or manipulated bandwidth. 
This is known as a means to artificially make network 
bandwidth appear high from a speed test, while no actual 
data traffic use exists that continuously works in 
conjunction with the results provided by the speed test. 
Additionally, in certain instances, the Service Licence 
Agreement outlines a sizable bandwidth figure, but at 
certain times, its ability to deliver service in line with the 
parameters of the agreement is hindered, hence the service 
is burdened and the level of access which ought to be 
available to major users is not probable (Razian et al., 
2022). Such problems arise where users or businesses have 
contracts with ISPs for a certain Mbps figure, but instead 
of the contracted value, they are given lower values or, at 
times, only some fraction of the figure during some other 
periods (Hapsari, 2022). There are also other situations 
where bandwidth management is performed as per the 
agreement, but for some reason, only half of the 
anticipated bandwidth is received in the monitoring of 
upload and download activities (Jhaveri et al., 2021). 
Moreover, having Internet outages for more than the 
specified durations in the agreement will, without doubt, 
pose a problem for many, especially those whose business 
functionality is highly dependent on the Internet (Biswal et 
al., 2024).  

Bandwidth inconsistency caused by the availability of 
bandwidth manipulation methods can be extremely 
harmful to consumers and service providers alike, as it 
results in Quality of Service (QoS) degradation. High 
latency or delay in data communication occurs when 
realized bandwidth falls below the commitments of the 
Service Level Agreements (SLAs), causing a notable 
effect on overall user experience for applications such as 
video conferencing. With bandwidth classification, it is 
expected that the optimisation of ISP services can be 
improved since ISPs can ensure that the provided 
bandwidth meets the requirements of the users and 
prevents wastage of network resources. Additionally, a 
better classification of bandwidth can enhance the Service 
Level Agreements (SLAs) between Internet Service 
Providers (ISPs) and their customers, while increasing the 
effectiveness of resource allocation at the same time. This 
improvement allows ISPs to provide bandwidth with more 
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precision according to the particular application demands, 
reduces unnecessary bandwidth usage, and ensures 
sufficient bandwidth for critical user requests (Collier, 
2024; Gomes et al., 2016). 

An examination of how service processes are run 
demonstrates that these trends can prove to be 
economically expensive as they lead to the decline of 
service quality, waste of service resources, or even 
incorrect decisions regarding service router infrastructure 
management (Ye et al., 2023). More technically, loss of 
bandwidth, false bandwidth, or manipulation of queue 
models, can in large unattended settings such as data 
centres, educational institutions, or corporations, damage 
the quality of service (QoS) and pose a risk to modern 
network management. Bandwidth that is lost, for example, 
during prolonged inactivity, is often not tracked by 
monitoring systems, thus preventing them from detecting 
what truly should be flagged: when data traffic appears to 
be normal (Jhaveri et al., 2021). Network intrusion 
detection systems based on statistics or models include 
clustering methods, distribution-based methods, graphical 
methods, and density-based methods (Komadina et al., 
2024). Regardless of the existence of alternative solutions, 
approaches to network analysis will always have gaps due 
to the rapid development of internet technology, thus, 
improvement of the actual network log data is always 
going to be required (Alhammadi, O., & Abul, O., 2024). 

A broad range of research conducted by Zhao et al. 
(2024) and Cermák et al. (2023), corroborates that both 
manual and automated network surveillance techniques 
have a myriad of shortcomings when it comes to detecting 
anomalies such as loss of bandwidth, especially when there 
is no database to monitor it (Duan, et al., 2022). Zhao et al. 
(2024) demonstrate that conventional bandwidth traffic 
monitoring systems fail to recognise abnormal activities 
because the daily network traffic that is captured, and often 
conducted manually, ‘appears’ normal but is, in fact, 
twelve hours' worth of non-detection (Zhao et al., 2024). 
This was echoed by Cermák et al. (2023), stating that 
analysis of system network logs not only takes significant 
amounts of time, but also heavily depends on the judgment 
of the analyst (Cermák et al., 2023), hence, introducing the 
issue of bias and misinterpretation. AsSadhan et al. (2020) 
suggest, automatic systems employing rudimentary upper 
and lower threshold boundaries are exceedingly 
problematic as they tend to have high rates of false 
positives and negatives because, unfortunately, the 
simplistic approach does not allow accommodating the 
ever-changing dynamics of network traffic (AsSadhan et 
al., 2020). Onietan et al. (2023) claimed that rule-driven 
systems still have some deficiencies in recognising new or 
undetected patterns, having to do with the condition of 
network traffic, because such systems base their action log 
substantiated behaviours on already documented 
phenomena. It was also asserted that the commonly used 
SNMP and NetFlow commercial monitoring tools do not 
enable full visibility into traffic behaviour at the 
application level, where most bandwidths are contended 
(Zhang, et al., 2024). Moreover, it was also noted that 
marker-based intrusion detection systems are not fully 

reliable in anomaly detection; they only sense threats 
defined in advance (Ring, et al., 2021). 

Saha et al. (2020) pointed out that traditional methods 
of dealing with network traffic flows are not very effective 
when it comes to dynamic changes in internet network 
traffic because they rely on fixed parameters. In the same 
vein, Zhang et al. (2024) argued that offline batch 
monitoring systems cannot retain important real-time 
information during periods of high activity and data 
volume. Dong et al. (2021) noted that a large number of 
automated network anomaly detection systems do not 
differentiate between genuine and non-genuine network 
traffic surges because there is no understanding of the 
information that is to be analysed before processing. A 
noteworthy insight here is that, although machine learning 
is starting to be used for network supervision, most of the 
systems tend to overfit and fail to generalise to new forms 
of anomalies, such as excessive use of bandwidth (Wang 
et al., 2021). In their research on the application of CNN 
for cyber-attack detection, Najar et al. (2024) mentioned 
that CNN’s prowess in this field is yet to be leveraged in 
the context of bandwidth DDoS cases. This was also noted 
in the work of Fotiadou et al. (2021), asserting that while 
CNN is capable of identifying abnormal network traffic 
behaviour, applying it to network logs is challenging 
unless powerful servers for massive network log data are 
utilised. In Cyber Security, CNN has proved to be able to 
identify DDoS attacks with up to 20% higher accuracy 
than traditional models. Yet, one of the biggest challenges 
is presented by non-IID (non-independent and identically 
distributed) data, i.e., the dataset is compromised by 
drastically different data distributions per device. In 
solving the non-IID problem, more intricate and elaborate 
algorithms must be employed to resolve the inconsistency 
of data distribution so that data retrieval and identification 
become more accurate and efficient (Lv et al., 2022). CNN 
in bandwidth utilization has been addressed in bandwidth 
forecasting with the aid of edge based on a CNN hybrid 
architecture. Yet, even though the results of testing reflect 
tremendous improvements in MAE and RMSE accuracy, 
the model could be less effective in very dynamic 
scenarios or where there are sudden spikes in bandwidth 
utilization. Consequently, the accuracy of the predictions 
made by the model improves only when incoming data 
exhibit stability, but in extreme situations such as DDoS 
attacks or abrupt network changes, the reliability of the 
prediction outcomes may be compromised, thereby 
rendering the detection of actual real time data challenging 
(Wen et al., 2022). 

Moreover, Alrubayyi et al. (2023) further emphasised 
that most existing AI systems lack necessary accuracy in 
the real world due to the limitations of the training datasets 
used, thus complicating bandwidth analysis in IoT devices 
even further. In addition, Šabanovic et al. (2024) reported 
that real-time AI-based monitoring systems still cannot 
fully sense micro anomalies such as network bandwidth 
spikes in 5G at a false negative rate of 2.37% on a 
persistent basis because of a high amount of noise in log 
data, which requires structured data logs. The same goes 
for the research by Magnani et al. (2022), which also 



TEPIAN Vol. 6 No. 2 (June 2025) 85-96 p-ISSN 2721-5350 e-ISSN 2721-5369 
Nurcahyo, A. C., Yong , T. H., & Atanda, A. F. (2025). Optimisation of Network Logs for Fake Bandwidth Classification using CNN. TEPIAN, 6(2). 

https://doi.org/10.51967/tepian.v6i2.3260 

–  87 –  

pointed out that there remains a gap in the integration of 
real-time network monitoring systems with self-adapting 
features to cope with abnormal network traffic. 
Collectively, these previous studies demonstrate that there 
is still a large gap in the market for effective network 
monitoring technologies set against the accurate detection 
and manipulation of bandwidth from real-time data 
streams. Therefore, there must be a different solution that 
is not just overriding and flexible, but also capable of 
transforming logs to accurate data in real-time every 
second, wherein the network log data is categorised as 
such, as proposed by the deep learning model of this study. 

In a prior analysis, the researcher (Zhuang, 2024) stated 
that the integration of artificial intelligence and deep 
learning technologies has become a valuable tool for 
identifying intricate phenomena in massive datasets. In 
this study, CNN is more suitable for classification because 
it has greater advantages compared to other algorithms. 
For example, it has a high accuracy rate of 99%, whereas 
SVM has 74%. The CNN model employs a deep learning 
architecture, which enables the network to extract features 
automatically, thereby enhancing generalisation 
capabilities for complicated tasks like multi-class 
classification. Conversely, SVM, although efficient for 
less complex tasks, is inefficient when dealing with high-
dimensional data and more than two classes, hence a 
greater classification error rate. Thus, CNN's capacity to 
learn from hierarchies in data and automatically extract 
features makes it outshine SVM in intricate classification 
tasks (Fadlil et al., 2022). Moreover, Lyu and Liu (2021) 
confirmed that the Convolutional Neural Network (CNN) 
architecture, which is often considered one of the most 
famous, was first developed for image analysis, but is now 
being extended to other fields like text processing. 
Similarly, Pham et al. (2023) demonstrated the use of CNN 
in detecting hidden patterns for cyber-attack classification 
from network logs. Similarly, work by Antonius et al. 
(2023) proved the successful application of CNN in 
modelling network traffic anomalies with high accuracy. 
Nevertheless, some of the previous studies that specifically 
applied CNN have bypassed the applicability of real 
network logs with many lines of data, say above half a 
million or even 700 thousand lines. This is mainly because 
there are very few means of obtaining network log data for 
analysis, most commonly having to depend on Wireshark, 
daily speed tests, or metered attacks from an observing IP 
address. This creates a gap in the literature that warrants 
further investigation, particularly in the area of identifying 
illegitimate bandwidth. 

This study is developed and carried out to fill the gap 
in research concerning fake bandwidth as compared to 
genuine bandwidth, with the growing need for internet use 
today. The network model that is tested in this research is 
the backbone model of the internet at the University of 
Technology Sarawak from the public domain in the Cyber 
Security lab. Then, real-time network log data is captured 
every second and subsequently categorised to estimate the 
levels of fake bandwidth, genuine bandwidth, and no 
heavy activity using the CNN algorithm. The major 
novelty of this method lies in two features: how the 

network performance is improved for data traffic that is 
received every second, something that has not been done 
in earlier studies. Then, the log labels are assigned every 
second for the fake activity model, the genuine activity 
model, and the no heavy activity model. The log data is 
processed and stored in what is referred to as the first part 
of the training data. Twenty days later, real data, log data 
collected over twenty-four hours each day, is uploaded as 
real data for feature extraction, which is the process of 
transforming raw log data into numerical forms that can be 
utilised by a CNN model. As for the results of this 
particular study, the model aims to do more than just 
classify network attacks or types of traffic; it also aims to 
classify the amounts of detected fake and real (genuine) 
bandwidth, as well as periods of inactivity (no heavy 
activity), all within the constraints of 2000 epochs, or as 
many iterations needed to optimally showcase the 
accuracy of the created CNN. The accuracy of the CNN’s 
classification is attributed to its architecture, compared to 
conventional approaches like Random Forest or Naive 
Bayes, which can better manage noise in the data and 
capture spatial dependencies within the data, hence 
yielding more precise classification results (Abdfilminaam 
et al., 2024). 
This study aims to construct an automated log extraction 
system on the internet backbone network using network 
log optimisation, and subsequently conduct deep learning 
analysis that can store, retrieve, and process vast amounts 
of log data, identify phantom bandwidth, and classify it at 
the University of Technology Sarawak. The system should 
work in actual network environments for further studies in 
network logs and deep learning towards assisting system 
administrators to monitor the system performance and 
minimise the effect of bandwidth abuse or fake bandwidth. 
This study also contributes to the theoretical advancement 
of more flexible and applicable deep learning approaches 
outside their traditional boundaries by employing the 
capabilities of CNN in non-image domains like network 
logs, especially in the real-time management of data 
captured every second of the day, averaging 25,000 to 
35,000 rows a day. This study provided a classification of 
three criteria from the summation of the abnormal 
bandwidth which is genuine bandwidth, fake bandwidth, 
and no heavy activity bandwidth, and each epoch will 
show accuracy loss validation accuracy validation loss and 
learning rate values while this study aims to set 2000 
epochs to get the best results of CNN. 
 

II. RESEARCH METHODS 

A.  The Design of The Network Model 

The methodology of this study is divided into three 
parts: the design of the network model, network data logs, 
and the CNN model. The first diagram comprises the 
design of a distributed computer network starting from the 
ISP side to the public IP address 60.53.x.x/26, which 
belongs to Telkom Malaysia Berhad and is one of the 
public routes utilised by this research as the Cyber Security 
Laboratory at the University of Technology Sarawak. The 
purpose of the public IP connection is to facilitate stable 
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bandwidth conditions for the purpose of analysing and 
optimising bandwidth management. The first step is to set 
up the network infrastructure, which comprises the 
backbone router, core switch, and dynamic DHCP to the 
Access Point, including users in Lab 4. In the backbone 
and core switch configuration part, it consists of DNS 
setup, firewall configuration, and bandwidth management 
turned off by the queue and switch to bypass a 100 -1000 
Mbps connection. It includes categorically active network 
configuration, automatic logging for 20 days. The network 
configuration is followed by deep learning with the use of 
real-time log data, as illustrated in Figure 1. 
 

 

Figure 1. Network Model / Log Optimization 
 

Moving on, the log data collection section seeks to 
locate and fetch the largest training data for a single day. 
The training data sample includes files larger than 4 MB in 
size, which were collected between 12:01 on 20th 
February and 12:00 on 21st February 2025. Moreover, 
monitoring of network traffic is performed for 20 days in 
February 2025. This information is captured at the router 
and transmitted to the mail server, while being monitored 
in real time through Telegram using the ID = 
@routeruts1100ahx_bot which is actively uploading files 
with the user ID and download speeds of 5, 10, 15, 20, 25, 
30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85,90, 95, 100, 
105, 110, 115, 120, 125 until 200 Mbps per second. “The 
download speed on 2nd March 2025 11:48:26 was more 
than 21 Mbps (Genuine Bandwidth) in UTS” is one of the 
examples given from the obtained model. Figure 2 is used 
to illustrate the Telegram model that was developed to 
showcase the automated active traffic data collection that 
comes from the API-key from Mikrotik 1100 AHx. 
 

 
 

 

Figure 2. Real-Time Monitoring Model on @routeruts1100ahx_bot 
 

The Usage Networking system logs are output into two 
partitions; the first being the auto-originating logs from the 
mail server through the RB1100 AHx connection, while 
the second is real-time monitoring output, which gets 
streamed straight to the Telegram bot. The next stage is 
classifying the bandwidth, where the network utilisation is 
further divided into 1 Mbps ranges up to 100 Mbps. This 
classification can be done by extracting the log data every 
second, which allows for a more precise and further 

optimised bandwidth meter pattern, as described in Figure 
3. Having three data points every second translates into a 
maximum of 55,000 lines worth of data in an astonishing 
day. These logs are very important because they tell a story 
of the trends in bandwidth utilisation and the anomalies 
that could be present in the network traffic in Lab 4, 
University of Technology Sarawak, Figure 3. 
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Figure 3. Bandwidth log on RB 1100 AHx Lab 4, University of Technology Sarawak 
 

This stage uses created logs that contain bandwidth 
activities, inclusive of the fake, genuine, and inactive 
values, alongside login information, script alterations, and 
captured activities saved on the disk. The next step is 
implementation using deep learning techniques, 
particularly neural network models. Applying these 
techniques allows for an analysis of the established 

patterns to classify the different percentages of genuine, 
fake, and inactive users based on their daily activity 
history. In this phase, the deep learning model is trained 
after the log collection to aid in understanding the patterns 
of bandwidth consumption and in finding anomalies in 
bandwidth usage using CNN. All network traffic in Lab 4 
is captured in ether 1 connection for Tx and Rx, as 
illustrated in Figure 4. 

 
 

Figure 4. Interface ether 1 / main internet connection used for capturing the entire recorded log data. 
 

Following the shift from data collection via Telegram and 
the mail server's .txt format for 20 consecutive days, we 
will now implement data classification using Python in 
conjunction with the CNN algorithm. The extracted and 
classified bandwidth data will further undergo evaluation 
to derive the metrics and performance indices for the 
network. 

B. CNN Implementation 

The CNN process is a continuation of the data that has 
been pre-processed in the backbone network in UTS Lab 
4. It entails data preprocessing, cleansing, feature 
engineering, labelling, data normalisation, noise filtering, 
as well as the training of a deep learning model on the first 
day’s dataset, followed by CNN classification and results 
presentation in the form of graphs as illustrated in the flow 
diagram in Figure 5. 
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Figure 5. CNN Bandwidth Classification Model 

 
The data flow through the CNN pipeline is conducted in a 
structured manner, commencing with model training 
utilizing complex network logs gathered over five days, 
and ending with the classification of real-time data 
accumulated over twenty days. Firstly, network logs are 
collected second by second from Computer Lab 4 within 
the University of Technology Sarawak (UTS). During the 
model's training period, logs are gathered for five days, 
which represents a broader and more sophisticated range 
of data. The dataset includes all forms of network 
activities, including extraneous entries, thereby making it 
larger in size and challenging for the model to learn from. 
The data flow for CNN processing from log acquisition to 
training and real-time data classification can be seen in 
Figure 6 as follows. 

 

Figure 6. Data Processing Flow of the CNN Algorithm  
 

The training logs are then subjected to a pre-processing 
step, in which the unwanted data is removed, missing 
values are addressed, and anomalies are corrected. Feature 
extraction is subsequently performed, in which data such 
as bandwidth values and timestamps are converted into 
numerical representations understandable by the CNN 
model. The log entries are then tagged as Fake Bandwidth, 
Genuine Bandwidth, or No Heavy Activity. This is 
followed by data normalization so that all of the features 
are scaled to a common range, typically between 0 and 1. 
The dataset is split into two datasets: training data and 
validation data. This splitting allows us to evaluate the 
performance of the model on unseen data. The CNN 
architecture is then trained using the given training dataset. 
It learns to identify patterns within the data through 
convolutional layers, pool layers, and fully connected or 

dense layers. The utilization of ReLU activation functions 
allows for the addition of non-linearity and thereby 
enhances the capabilities of the model to identify more 
intricate patterns. 

During the training process, the model calculates the 
loss value, which is the difference between the predicted 
labels and the actual labels. The loss is calculated using the 
Categorical Cross-Entropy Loss function, and the model's 
internal weights are adjusted using the backpropagation 
algorithm to improve accuracy. At the end of the training 
process, the model is tested using the validation dataset. 
Several performance measures, such as Precision, Recall, 
and F1-Score, are used to assess the performance of the 
model in classifying entries into the three defined 
categories. It is utilized to categorize real-time data only 
after the model achieves good accuracy. Logs collected for 
twenty days from Computer Lab 4 at UTS are processed at 
this stage. This real-time dataset is cleaner and more 
precise as it contains only logs related to actual network 
activity, those corresponding to Telegram and Mikrotik. 
Then the model developed classifies every real-time log 
entry into one of the three different categories: Fake 
Bandwidth, Genuine Bandwidth, or No Heavy Activity. 
The results of the classification process are visualized 
using pie charts, trend graphs, and loss-over-epochs graphs 
generated during the training process, thus illustrating the 
learning progress of the model. 

As the first step in the CNN section, information is 
collected from the RB 1100 server every second through 
the bot @routeruts1100data_bot on Telegram. The 
information collected constitutes network logs detailing 
users' bandwidth consumption. This data is processed as 
the main input in the analysis shown below. 
 
def load_data(file):  
    with open(file.name, "r", encoding="utf-8") 
as f:  
        lines = f.readlines()  
    data, labels, bandwidth = [[] for _ in 
range(3)]  
    for line in lines:  
       line = line.strip().lower()  
        if "fake bandwidth" in line:  
            labels.append("Fake")  
bandwidth.append(int(re.search(r'(\d+)', 
line).group()))  
        elif "genuine bandwidth" in line:  
            labels.append("Genuine")  
bandwidth.append(int(re.search(r'(\d+)', 
line).group()))  
        elif "no heavy activity" in line:  
            labels.append("No Heavy")  
            bandwidth.append(0)  
        data.append(line)  
    return data, labels, bandwidth 

 
Mathematically, the preprocessing operation can be 

written as (1) 
 

X_cleaned = clean_text(X_raw)   (1) 
 

where X_raw is the provided data of the unprocessed log, 
and X_cleaned is the data after a text cleaning process that 
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removes non-alphanumeric characters and applies text 
normalisation. Data obtained from network logs undergo a 
preprocessing procedure to ensure that the format is 
appropriate for the output of three criteria, which are fake, 
genuine, and no heavy; this process consists of text 
cleansing and normalisation, as well as formatting the data 
to make it ready to be processed as follows. 
 
output = text.lower() 
output = re.sub(r'[^a-zA-Z0-9\s]', '', output) 
return output 
 

Following the preprocessing, data cleansing was 
performed by detecting and resolving missing or invalid 
data. Next, normalisation was done to ensure that all data 
had a common uniform scale. Normalisation is the process 
of changing the scale of data so that features such as 
bandwidth speed can be equitably compared. The values 
for this normalisation were set by transforming all values 
to a range between 0 and 1, represented as follows (2) 
 

X_norm = (X - X_min) / (X_max - X_min)  (2) 
 
from sklearn.preprocessing import LabelEncoder 
label_encoder = LabelEncoder() 
labels_train = 
label_encoder.fit_transform(labels_train) 

 
The next step is advanced Feature Engineering, in this 

case, Double Bandwidth Detection. At this stage, the aim 
is to identify the implementation of dual bandwidth due to 
networking anomalies or fraudulent activities, for 
example, at over 100 Mbps, as the model only considers 
up to 100 Mbps. 

 
X_double = { x | x > 100 Mbps }     (3) 

 
Wherein X_double is filtered bandwidth data 

containing values greater than 100 Mbps, indicating the 
possibility of an anomaly, using the following script. 
 
bandwidth_values = [int(re.search(r'(\d+)', 
line).group()) for line in data if 
re.search(r'(\d+)', line)] 
double_bandwidth_detected = [bw for bw in 
bandwidth_values if bw > 100] 

 
Data that has been processed will be labelled to 

distinguish genuine bandwidth, fake bandwidth, and no 
heavy activity. When data demonstrates an upload speed 
from 21.22 to 100 Mbps, the data will be labelled as 
genuine bandwidth for both upload and download. 
Meanwhile, if the data shows an upload speed of less than 
20 Mbps, the data will be labelled as fake bandwidth. Data 
without heavy activity will be labelled as no heavy 
activity. 
 
 
 
 
 

if "fake bandwidth" in line:   
    labels.append("Fake")   
elif "genuine bandwidth" in line:   
    labels.append("Genuine")   
elif "no heavy activity" in line:   
    labels.append("No Heavy") 
 

Based on the above flowchart, the next stage involves 
noise filtering to select irrelevant data or errors present in 
the log file, such as uncontrolled logon changes or 
bandwidth information augmenting that are outside the 
scope of fake, genuine, or no heavy, or deleting the so-
called short strings which are devoid of meaning.  
 
filtered_data = [line for line in data if 
len(line) > 10] 

 
The main part, that is training data, is done with some 

convolution and pooling layers to capture patterns in the 
log data of the network. Parameter models such as the 
number of convolutional layers, filter size, and epoch were 
implemented on the output. The model was then trained 
with processed data, while the results were evaluated to 
measure the accuracy of classification for fake heavy 
bandwidth, genuine heavy, and no heavy bandwidth, 
which was over five hundred thousand rows of data. The 
batch size utilised in this experiment was 32, which 
indicates that, in every iteration of the training, 32 samples 
of data will be considered for gradient calculation and 
weight update. The core of the CNN model includes 
several convolutional layers and pooling layers that 
operate on raw input data to learn spatial features. 
Mathematically, the convolution operation can be 
expressed as follows: 
 
C(i,j) = sum_m sum_n X(i+m, j+n) * W(m,n)   (4) 
 

Where X indicates the input data (log data or 
bandwidth value), W is the convolutional filter, and C is 
the resultant feature map. Filter W learns the spatial 
patterns in the data using local analysis windows, which 
are then followed by pooling operations to decrease the 
dimensions of the feature map and capture the 
characteristics by the encoding model as follows: 
 
model = Sequential([  
     Embedding(num_words, embedding_dim, 
input_length=input_length),  
     Conv1D(256, 3, activation='relu'),  
     MaxPooling1D(3),  
     Conv1D(128, 3, activation='relu'),  
     MaxPooling1D(3),  
     Conv1D(64, 3, activation='relu'),  
     MaxPooling1D(3),  
     GlobalMaxPooling1D(),  
     Dense(128, activation='relu'),  
     Dropout(0.5),  
     Dense(num_classes, activation='softmax')  
 ])  
 model.compile(loss='categorical_crossentropy', 
optimizer='adam', metrics=['accuracy'])  
 return model 
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After the CNN model has been trained with the initial 
data, model evaluation is carried out by testing the data to 
see the accuracy obtained from outside. The classification 
results are then visualised in a pie chart depicting the 
distribution of categories. 
 
category_distribution = 
"category_distribution.png" 
plt.figure(figsize=(8, 6)) 
labels = ['Fake Bandwidth', 'Genuine Bandwidth', 
'No Heavy Activity'] 
sizes = [fake_detected, genuine_detected, 
no_heavy_detected] 
def func(pct, allvalues): 
    absolute = int(np.round(pct / 100.* 
np.sum(allvalues))) 
return f"{pct:.1f}%\n({absolute:d})" 
plt.pie(sizes, labels=labels, autopct=lambda 
pct: func(pct, sizes), startangle=140) 

 
The output of the main step that occurs in this 

application is the uploading of data or files. The user can 
upload network log files in the form of Daily.txt, which 
contains records of bandwidth speed activity over 24 hours 
at three-second intervals. The data in the first capture was 
trained in the first 20 days; later, this training was used as 
real-time data, processed daily, and updated automatically 
from the mail server and monitoring Telegram, as shown 
in Figure 6 model of the upload dataset. 

 
 

Figure 6. Dataset Upload Model 
 

In the deep learning model training process, this 
application issues two parameters subject to manual 
configuration as outputs: epoch and batch size. An epoch, 
also referred to as an iteration, is a complete forward and 
backward pass of all the training data through the model. 
In this context, the maximum number of epochs is set to 
2000, which is sufficient to enable the model to deeply 
learn the patterns within the bandwidth data. Batch size is 
referred to as the number of records that are processed in a 
single cycle of weight update. In this case, a batch size of 
32 was used, meaning that 32 samples were processed 
every time the model performed an update, as illustrated in 
Figure 7. 

 

Figure 7. Python based CNN Log Classifier Model 
 

During training, the CNN model performed a deep 
analysis of the incoming log data. Each epoch provided 
new learning for the model to be able to identify features 
from the three categories of bandwidths. Genuine 
Bandwidth pertains to network activities that display 
legitimate and real bandwidth usage. Fake Bandwidth, on 
the other hand, refers to the activity in which there is less 
than 15% of the allowed 100 Mbps bandwidth utilisation 
(in which case 200 Mbps is used but there is a tolerance 
limit of 20 Mbps) to show a high level of utilisation 
without any actual data traffic for 24 hours a day for every 
second. Moreover, the No Heavy Activity evidence shows 
having little or no significant bandwidth activity. The 
model was first trained, and the next step was to evaluate 
the model using the test data that was set aside. The model 
was tested for the degree of accuracy on how it classifies 
new data from the set of three predetermined categories, as 
shown in Figure 8. 
 

 

Figure 8. Python-based CNN Classification Results 
Model 

 
III. RESULTS AND DISCUSSIONS 

A. CNN Model Evaluation Results 

In this study, the CNN architecture was used to classify 
network logs into Fake Bandwidth, Genuine Bandwidth, 
and No Heavy Activity. The results were obtained from the 
bandwidth logs that had been documented from the traffic 
graphs into data logs as in the Figures 9 and 10 which are 
the results of monitoring and have consumed the 
bandwidth resources until downloading 25 Terabytes and 
uploading 7 Terabytes for 20 days of bypass bandwidth 
monitoring which was later converted to monitoring data 
in seconds. 
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Figure 9. Network Traffic Model 
 

The data depicted in Figures 8 and 9 was converted into 
a .txt format and sent from the mail server 
phdscm01@uts.edu.my over port 587, which is utilized for 
the transmission of emails encrypted using Secure SMTP 
(SMTPS). The information is, on average, 3-6 MB per file 
per day. It is to be uploaded as real-world data that has 
been classified using CNN and needs to be processed. 

 

Figure 10. Monitoring Results for 20 Days from RB 1100 
AHx in Lab 4 UTS 

 
CNN was used to classify internet logs of Fake 

Bandwidth, Genuine Bandwidth, and No Heavy Activity. 
For the evaluation, Precision, Recall, F1-Score, and 
Support were calculated for each category. The use of 
these metrics is crucial to assess the effectiveness of the 
model in log data pattern classification. After training the 
model with 2000 epochs, the evaluation results are 
presented in Table 1. 
 

Table 1. Precision, Recall, and F1-Score Test Results 
Type Precision Recall F1-Score Support 

Fake 
Bandwidth 

0.89 0.90 0.89 170544 

Genuine 
Bandwidth 

0.92 0.95 0.93 378289 

No Heavy 
Activity 

0.98 0.84 0.91 19382 

 

Based on the table above, we observe that Genuine 
Bandwidth possesses very high Precision and Recall (0.92 
and 0.95), which suggests that this model is highly 
accurate in distinguishing valid network activities. On the 
other hand, while Fake Bandwidth had a lower Precision 
(0.89), the higher Recall (0.90) suggests that the model is 
very aggressive in detecting fake bandwidths. No Heavy 
Activity has astonishingly high Precision (0.98) with lower 
Recall (0.84), which implies that though this category is 
detected accurately, the model does not capture all 
pertinent entries. This is corroborated by the pie chart 
results in Figure 11, as obtained from the application.  
 

 

Figure 11. Bandwidth Distribution Model from CNN 
Classification at Lab 4 UTS 

 
The evaluation was carried out using the metrics of 
Precision, Recall, F1-Score, and Support for each 
category. The importance of these metrics is vital when it 
comes to assessing the effectiveness of a model in 
recognizing patterns in the log data. 

B. Loss Over Epochs 

On the external analysis of this application, 
calculations were made for the Loss Over Epochs graph 
that illustrates the loss value during training over 2,000 
epochs, which took 7 hours of processing. This evidence 
illustrates the level of prediction error made by the model 
in relation to the actual prediction results versus the real 
labels. Categorical cross-entropy was used to calculate 
loss, and its mathematical expression is (4) 

 
Loss = - Σ y_i log(ŷ_i)   (4) 

 
Where y_i is the target value for class i, and ŷ_i is the 

predicted probability of the model for that class. From the 
training results displayed in Figure 12, it is evident that the 
loss value decreases sharply, which indicates that the 
model learns these things very quickly because the log data 
was already distributed properly according to the required 
criteria, although it necessitated the router and server to 
perform at a high resource cost. 

Figure 12 illustrates that CNN classified bandwidths 
for the first time during training. The loss was 
approximately equal to 1.0 at epoch zero, then sharply 
decreased to 0.5 by epoch 100, indicating that the model 
was beginning to assimilate data swiftly. Subsequently, 
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from epochs 100 to 500, the loss reduction rate slowed 
down progressively, hitting approximately 0.2, which 
indicates the model was nearing the convergence point. 
Within the region of epochs 500 to 1000, the loss 
continued to decrease and reached around 0.1, which 
indicated that the model was becoming more effective in 
reducing the prediction errors. 
 

 

Figure 12. Loss Over Epochs of the CNN Classification 
Results 

 
At the 2000th epoch, which is the end of the training 

period, the loss value was around 0.05, which is incredibly 
low and suggests that the model achieved optimal 
convergence, where the prediction error is nearly zero. The 
use of epochs shows that the robustness of the model can 
be increased by using techniques where the learning rate 
can be dropped at certain points during training.   Figure 
13 shows the CNNs processing in this study. 

 
 

Figure 13. Epoch Processing on CNN to Obtain Accuracy 
and Loss Over Epochs 

 

C. Results of the Novelty of The Research (Network Log 
Optimisation) 

The novelty of the results in this research refers to the 
consideration of using network logs captured in real-time 
over 20 continuous days, with data collection frequency 
every second, to uncover fake bandwidth or more than 
500,000 lines of data used to train the CNN model. With 
the presence of real-time network logs, there is room for a 

more dynamic and accurate approach in monitoring the 
utilization of large-scale computer networks using log 
monitoring and CNN-based classification. The success in 
classifying hundreds of thousands of lines of logs 
demonstrates CNN's extraordinary advantages in 
operating on big data and ability to capture very subtle 
phenomena in complex data that as shown:  
Detected Fake Bandwidth  : 170544 (30.01%) 
Detected Genuine Bandwidth : 378289 (66.57%) 
Detected No Heavy Activity : 19382 (3.41%) 
 

The log analysis approach can overcome the 
difficulties posed by traditional techniques that rely on 
larger time frames or sparse data. The results from this 
CNN model show a high classification accuracy, even 
when working with a large amount of data in real time. 
This model validated the notion that CNNs can be 
modified and enhanced for the application of everyday 
real-time data, which requires instant classification along 
with a very high accuracy level, as evidenced in Figure 14. 

 
   

Figure 14. CNN Application Model for Lab 4 UTS 
 
 

IV. CONCLUSION 
 

This study demonstrated that the CNN model can be 
used to classify network logs to detect fake bandwidth, 
genuine bandwidth, and no heavy activity with high 
accuracy using log data collected in real-time every second 
for 20 days. This CNN model has proven capable of 
processing over 500,000 lines of log data at once, 
demonstrating the model's ability to recognise very 
complex and subtle patterns in large volumes of data that 
traditional methods struggle with. CNN successfully 
classified genuine bandwidth with high accuracy, 
evidenced by model performance evaluation based on 
metrics of: Precision 0.92, Recall 0.95, fake bandwidth 
detected with Precision 0.89 and Recall 0.90, and no heavy 
activity detected with Precision 0.98 and Recall 0.84. The 
Loss Over Epochs results show that as the number of 
epochs increased, the CNN model experienced a decrease 
in loss from 1.0 at epoch 0 to 0.05 at epoch 2000. This 
estimate revealed that the CNN model successfully 
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minimised prediction errors with a stable training process 
that approached an optimal convergence point indicated by 
the decrease in loss. As part of the key innovation in this 
research, the optimisation of real-time network log 
collection and processing using CNN has proven effective 
on dynamically distributed data. Because the data is 
gathered systematically every second, the CNN model can 
classify it with great accuracy, even at a very large scale. 
This approach not only improves the accuracy of detecting 
imprecise manipulative fake bandwidth, but also greatly 
aids fake bandwidth detection and network monitoring 
optimisation in real-time responsive environments. 
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