
TEPIAN Vol. 6 No. 2 (June 2025) 85-96 p-ISSN 2721-5350 e-ISSN 2721-5369
https://doi.org/10.51967/tepian.v6i2.3260 © 2025 Tepian Politeknik Pertanian Negeri Samarinda

 This work is licensed under a Creative Commons Attribution 4.0 License CC-BY

– 85 –

Optimisation of Network Logs for Fake
Bandwidth Classification using CNN

Azriel Christian Nurcahyo *

Design and Technology Centre,
School of Computing and Creative
Media, University of Technology

Sarawak, 96000, Malaysia
pic24030001@student.uts.edu.my

*Corresponding author

Huong Yong Ting
Design and Technology Centre,

School of Computing and Creative
Media, University of Technology

Sarawak, 96000, Malaysia
alan.ting@uts.edu.my

Abdulwahab Funsho Atanda
Design and Technology Centre,

School of Computing and Creative
Media, University of Technology

Sarawak, 96000, Malaysia
abdulwahab@uts.edu.my

 Submitted: 2025-03-26; Accepted: 2025-04-21; Published: 2025-06-01

Abstract— The goal of this study is to enhance the
classification accuracy of fake bandwidth using a CNN
model, leveraging network logs collected in real-time. For
this research, the network logs from the Cyber Security
Laboratory of the University of Technology Sarawak are
used as a dataset for training the CNN model. The dataset
consists of 20 days of continuous network activity logging,
which results in over 500,000 data entries. According to
the model evaluation results, the trained CNN model
demonstrated high accuracy in classifying genuine
bandwidth (Precision: 0.92, Recall: 0.95). Moreover, it
achieved considerable success in detecting fake bandwidth
(Precision: 0.89, Recall: 0.90) and the no heavy activity
category (Precision: 0.98, Recall: 0.84). Analysis of Loss
Over Epochs showed a dramatic decrease in loss during
the training phase, with optimal convergence reached by
epoch 2000. Identifying these characteristics enables
monitoring systems to classify network data with high
certainty, detecting bandwidth manipulation in expansive
networks. Thus, this research aids the design of dynamic
network monitoring systems that require minimal response
time while maintaining high accuracy.

Keywords— Convolutional Neural Network (CNN), Fake
Bandwidth, Network Logs, Bandwidth Utilization

I. INTRODUCTION

The World is in an era where virtually all human
interactions across different sectors require a stable
Internet connection, which is used to facilitate countless
activities (Dolgui, A et al., 2021). In an AI-powered world,
without the use of the Internet, all work models involving
software and applications would become nearly
impossible, especially those requiring high connectivity
(Giordano et al., 2022). The Internet is critical for software
and applications, especially those providing essential
services, to function effectively in today's digital
environment (Sari, M et al., 2023). Many enterprise
devices or network loads are always associated with high
bandwidth usage (Shi, J. et al., 2024). On a broader
spectrum, high as well as low levels of an enterprise may
not be accurately depicted as the real user of the bandwidth
based on certain activities (Oji et al., 2021). Exceptional

situations can be found where network bandwidth is
referred to as fake bandwidth or manipulated bandwidth.
This is known as a means to artificially make network
bandwidth appear high from a speed test, while no actual
data traffic use exists that continuously works in
conjunction with the results provided by the speed test.
Additionally, in certain instances, the Service Licence
Agreement outlines a sizable bandwidth figure, but at
certain times, its ability to deliver service in line with the
parameters of the agreement is hindered, hence the service
is burdened and the level of access which ought to be
available to major users is not probable (Razian et al.,
2022). Such problems arise where users or businesses have
contracts with ISPs for a certain Mbps figure, but instead
of the contracted value, they are given lower values or, at
times, only some fraction of the figure during some other
periods (Hapsari, 2022). There are also other situations
where bandwidth management is performed as per the
agreement, but for some reason, only half of the
anticipated bandwidth is received in the monitoring of
upload and download activities (Jhaveri et al., 2021).
Moreover, having Internet outages for more than the
specified durations in the agreement will, without doubt,
pose a problem for many, especially those whose business
functionality is highly dependent on the Internet (Biswal et
al., 2024).

Bandwidth inconsistency caused by the availability of
bandwidth manipulation methods can be extremely
harmful to consumers and service providers alike, as it
results in Quality of Service (QoS) degradation. High
latency or delay in data communication occurs when
realized bandwidth falls below the commitments of the
Service Level Agreements (SLAs), causing a notable
effect on overall user experience for applications such as
video conferencing. With bandwidth classification, it is
expected that the optimisation of ISP services can be
improved since ISPs can ensure that the provided
bandwidth meets the requirements of the users and
prevents wastage of network resources. Additionally, a
better classification of bandwidth can enhance the Service
Level Agreements (SLAs) between Internet Service
Providers (ISPs) and their customers, while increasing the
effectiveness of resource allocation at the same time. This
improvement allows ISPs to provide bandwidth with more

TEPIAN Vol. 6 No. 2 (June 2025) 85-96 p-ISSN 2721-5350 e-ISSN 2721-5369
Nurcahyo, A. C., Yong , T. H., & Atanda, A. F. (2025). Optimisation of Network Logs for Fake Bandwidth Classification using CNN. TEPIAN, 6(2).

https://doi.org/10.51967/tepian.v6i2.3260

– 86 –

precision according to the particular application demands,
reduces unnecessary bandwidth usage, and ensures
sufficient bandwidth for critical user requests (Collier,
2024; Gomes et al., 2016).

An examination of how service processes are run
demonstrates that these trends can prove to be
economically expensive as they lead to the decline of
service quality, waste of service resources, or even
incorrect decisions regarding service router infrastructure
management (Ye et al., 2023). More technically, loss of
bandwidth, false bandwidth, or manipulation of queue
models, can in large unattended settings such as data
centres, educational institutions, or corporations, damage
the quality of service (QoS) and pose a risk to modern
network management. Bandwidth that is lost, for example,
during prolonged inactivity, is often not tracked by
monitoring systems, thus preventing them from detecting
what truly should be flagged: when data traffic appears to
be normal (Jhaveri et al., 2021). Network intrusion
detection systems based on statistics or models include
clustering methods, distribution-based methods, graphical
methods, and density-based methods (Komadina et al.,
2024). Regardless of the existence of alternative solutions,
approaches to network analysis will always have gaps due
to the rapid development of internet technology, thus,
improvement of the actual network log data is always
going to be required (Alhammadi, O., & Abul, O., 2024).

A broad range of research conducted by Zhao et al.
(2024) and Cermák et al. (2023), corroborates that both
manual and automated network surveillance techniques
have a myriad of shortcomings when it comes to detecting
anomalies such as loss of bandwidth, especially when there
is no database to monitor it (Duan, et al., 2022). Zhao et al.
(2024) demonstrate that conventional bandwidth traffic
monitoring systems fail to recognise abnormal activities
because the daily network traffic that is captured, and often
conducted manually, ‘appears’ normal but is, in fact,
twelve hours' worth of non-detection (Zhao et al., 2024).
This was echoed by Cermák et al. (2023), stating that
analysis of system network logs not only takes significant
amounts of time, but also heavily depends on the judgment
of the analyst (Cermák et al., 2023), hence, introducing the
issue of bias and misinterpretation. AsSadhan et al. (2020)
suggest, automatic systems employing rudimentary upper
and lower threshold boundaries are exceedingly
problematic as they tend to have high rates of false
positives and negatives because, unfortunately, the
simplistic approach does not allow accommodating the
ever-changing dynamics of network traffic (AsSadhan et
al., 2020). Onietan et al. (2023) claimed that rule-driven
systems still have some deficiencies in recognising new or
undetected patterns, having to do with the condition of
network traffic, because such systems base their action log
substantiated behaviours on already documented
phenomena. It was also asserted that the commonly used
SNMP and NetFlow commercial monitoring tools do not
enable full visibility into traffic behaviour at the
application level, where most bandwidths are contended
(Zhang, et al., 2024). Moreover, it was also noted that
marker-based intrusion detection systems are not fully

reliable in anomaly detection; they only sense threats
defined in advance (Ring, et al., 2021).

Saha et al. (2020) pointed out that traditional methods
of dealing with network traffic flows are not very effective
when it comes to dynamic changes in internet network
traffic because they rely on fixed parameters. In the same
vein, Zhang et al. (2024) argued that offline batch
monitoring systems cannot retain important real-time
information during periods of high activity and data
volume. Dong et al. (2021) noted that a large number of
automated network anomaly detection systems do not
differentiate between genuine and non-genuine network
traffic surges because there is no understanding of the
information that is to be analysed before processing. A
noteworthy insight here is that, although machine learning
is starting to be used for network supervision, most of the
systems tend to overfit and fail to generalise to new forms
of anomalies, such as excessive use of bandwidth (Wang
et al., 2021). In their research on the application of CNN
for cyber-attack detection, Najar et al. (2024) mentioned
that CNN’s prowess in this field is yet to be leveraged in
the context of bandwidth DDoS cases. This was also noted
in the work of Fotiadou et al. (2021), asserting that while
CNN is capable of identifying abnormal network traffic
behaviour, applying it to network logs is challenging
unless powerful servers for massive network log data are
utilised. In Cyber Security, CNN has proved to be able to
identify DDoS attacks with up to 20% higher accuracy
than traditional models. Yet, one of the biggest challenges
is presented by non-IID (non-independent and identically
distributed) data, i.e., the dataset is compromised by
drastically different data distributions per device. In
solving the non-IID problem, more intricate and elaborate
algorithms must be employed to resolve the inconsistency
of data distribution so that data retrieval and identification
become more accurate and efficient (Lv et al., 2022). CNN
in bandwidth utilization has been addressed in bandwidth
forecasting with the aid of edge based on a CNN hybrid
architecture. Yet, even though the results of testing reflect
tremendous improvements in MAE and RMSE accuracy,
the model could be less effective in very dynamic
scenarios or where there are sudden spikes in bandwidth
utilization. Consequently, the accuracy of the predictions
made by the model improves only when incoming data
exhibit stability, but in extreme situations such as DDoS
attacks or abrupt network changes, the reliability of the
prediction outcomes may be compromised, thereby
rendering the detection of actual real time data challenging
(Wen et al., 2022).

Moreover, Alrubayyi et al. (2023) further emphasised
that most existing AI systems lack necessary accuracy in
the real world due to the limitations of the training datasets
used, thus complicating bandwidth analysis in IoT devices
even further. In addition, Šabanovic et al. (2024) reported
that real-time AI-based monitoring systems still cannot
fully sense micro anomalies such as network bandwidth
spikes in 5G at a false negative rate of 2.37% on a
persistent basis because of a high amount of noise in log
data, which requires structured data logs. The same goes
for the research by Magnani et al. (2022), which also

TEPIAN Vol. 6 No. 2 (June 2025) 85-96 p-ISSN 2721-5350 e-ISSN 2721-5369
Nurcahyo, A. C., Yong , T. H., & Atanda, A. F. (2025). Optimisation of Network Logs for Fake Bandwidth Classification using CNN. TEPIAN, 6(2).

https://doi.org/10.51967/tepian.v6i2.3260

– 87 –

pointed out that there remains a gap in the integration of
real-time network monitoring systems with self-adapting
features to cope with abnormal network traffic.
Collectively, these previous studies demonstrate that there
is still a large gap in the market for effective network
monitoring technologies set against the accurate detection
and manipulation of bandwidth from real-time data
streams. Therefore, there must be a different solution that
is not just overriding and flexible, but also capable of
transforming logs to accurate data in real-time every
second, wherein the network log data is categorised as
such, as proposed by the deep learning model of this study.

In a prior analysis, the researcher (Zhuang, 2024) stated
that the integration of artificial intelligence and deep
learning technologies has become a valuable tool for
identifying intricate phenomena in massive datasets. In
this study, CNN is more suitable for classification because
it has greater advantages compared to other algorithms.
For example, it has a high accuracy rate of 99%, whereas
SVM has 74%. The CNN model employs a deep learning
architecture, which enables the network to extract features
automatically, thereby enhancing generalisation
capabilities for complicated tasks like multi-class
classification. Conversely, SVM, although efficient for
less complex tasks, is inefficient when dealing with high-
dimensional data and more than two classes, hence a
greater classification error rate. Thus, CNN's capacity to
learn from hierarchies in data and automatically extract
features makes it outshine SVM in intricate classification
tasks (Fadlil et al., 2022). Moreover, Lyu and Liu (2021)
confirmed that the Convolutional Neural Network (CNN)
architecture, which is often considered one of the most
famous, was first developed for image analysis, but is now
being extended to other fields like text processing.
Similarly, Pham et al. (2023) demonstrated the use of CNN
in detecting hidden patterns for cyber-attack classification
from network logs. Similarly, work by Antonius et al.
(2023) proved the successful application of CNN in
modelling network traffic anomalies with high accuracy.
Nevertheless, some of the previous studies that specifically
applied CNN have bypassed the applicability of real
network logs with many lines of data, say above half a
million or even 700 thousand lines. This is mainly because
there are very few means of obtaining network log data for
analysis, most commonly having to depend on Wireshark,
daily speed tests, or metered attacks from an observing IP
address. This creates a gap in the literature that warrants
further investigation, particularly in the area of identifying
illegitimate bandwidth.

This study is developed and carried out to fill the gap
in research concerning fake bandwidth as compared to
genuine bandwidth, with the growing need for internet use
today. The network model that is tested in this research is
the backbone model of the internet at the University of
Technology Sarawak from the public domain in the Cyber
Security lab. Then, real-time network log data is captured
every second and subsequently categorised to estimate the
levels of fake bandwidth, genuine bandwidth, and no
heavy activity using the CNN algorithm. The major
novelty of this method lies in two features: how the

network performance is improved for data traffic that is
received every second, something that has not been done
in earlier studies. Then, the log labels are assigned every
second for the fake activity model, the genuine activity
model, and the no heavy activity model. The log data is
processed and stored in what is referred to as the first part
of the training data. Twenty days later, real data, log data
collected over twenty-four hours each day, is uploaded as
real data for feature extraction, which is the process of
transforming raw log data into numerical forms that can be
utilised by a CNN model. As for the results of this
particular study, the model aims to do more than just
classify network attacks or types of traffic; it also aims to
classify the amounts of detected fake and real (genuine)
bandwidth, as well as periods of inactivity (no heavy
activity), all within the constraints of 2000 epochs, or as
many iterations needed to optimally showcase the
accuracy of the created CNN. The accuracy of the CNN’s
classification is attributed to its architecture, compared to
conventional approaches like Random Forest or Naive
Bayes, which can better manage noise in the data and
capture spatial dependencies within the data, hence
yielding more precise classification results (Abdfilminaam
et al., 2024).
This study aims to construct an automated log extraction
system on the internet backbone network using network
log optimisation, and subsequently conduct deep learning
analysis that can store, retrieve, and process vast amounts
of log data, identify phantom bandwidth, and classify it at
the University of Technology Sarawak. The system should
work in actual network environments for further studies in
network logs and deep learning towards assisting system
administrators to monitor the system performance and
minimise the effect of bandwidth abuse or fake bandwidth.
This study also contributes to the theoretical advancement
of more flexible and applicable deep learning approaches
outside their traditional boundaries by employing the
capabilities of CNN in non-image domains like network
logs, especially in the real-time management of data
captured every second of the day, averaging 25,000 to
35,000 rows a day. This study provided a classification of
three criteria from the summation of the abnormal
bandwidth which is genuine bandwidth, fake bandwidth,
and no heavy activity bandwidth, and each epoch will
show accuracy loss validation accuracy validation loss and
learning rate values while this study aims to set 2000
epochs to get the best results of CNN.

II. RESEARCH METHODS

A. The Design of The Network Model

The methodology of this study is divided into three
parts: the design of the network model, network data logs,
and the CNN model. The first diagram comprises the
design of a distributed computer network starting from the
ISP side to the public IP address 60.53.x.x/26, which
belongs to Telkom Malaysia Berhad and is one of the
public routes utilised by this research as the Cyber Security
Laboratory at the University of Technology Sarawak. The
purpose of the public IP connection is to facilitate stable

TEPIAN Vol. 6 No. 2 (June 2025) 85-96 p-ISSN 2721-5350 e-ISSN 2721-5369
Nurcahyo, A. C., Yong , T. H., & Atanda, A. F. (2025). Optimisation of Network Logs for Fake Bandwidth Classification using CNN. TEPIAN, 6(2).

https://doi.org/10.51967/tepian.v6i2.3260

– 88 –

bandwidth conditions for the purpose of analysing and
optimising bandwidth management. The first step is to set
up the network infrastructure, which comprises the
backbone router, core switch, and dynamic DHCP to the
Access Point, including users in Lab 4. In the backbone
and core switch configuration part, it consists of DNS
setup, firewall configuration, and bandwidth management
turned off by the queue and switch to bypass a 100 -1000
Mbps connection. It includes categorically active network
configuration, automatic logging for 20 days. The network
configuration is followed by deep learning with the use of
real-time log data, as illustrated in Figure 1.

Figure 1. Network Model / Log Optimization

Moving on, the log data collection section seeks to
locate and fetch the largest training data for a single day.
The training data sample includes files larger than 4 MB in
size, which were collected between 12:01 on 20th
February and 12:00 on 21st February 2025. Moreover,
monitoring of network traffic is performed for 20 days in
February 2025. This information is captured at the router
and transmitted to the mail server, while being monitored
in real time through Telegram using the ID =
@routeruts1100ahx_bot which is actively uploading files
with the user ID and download speeds of 5, 10, 15, 20, 25,
30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85,90, 95, 100,
105, 110, 115, 120, 125 until 200 Mbps per second. “The
download speed on 2nd March 2025 11:48:26 was more
than 21 Mbps (Genuine Bandwidth) in UTS” is one of the
examples given from the obtained model. Figure 2 is used
to illustrate the Telegram model that was developed to
showcase the automated active traffic data collection that
comes from the API-key from Mikrotik 1100 AHx.

Figure 2. Real-Time Monitoring Model on @routeruts1100ahx_bot

The Usage Networking system logs are output into two
partitions; the first being the auto-originating logs from the
mail server through the RB1100 AHx connection, while
the second is real-time monitoring output, which gets
streamed straight to the Telegram bot. The next stage is
classifying the bandwidth, where the network utilisation is
further divided into 1 Mbps ranges up to 100 Mbps. This
classification can be done by extracting the log data every
second, which allows for a more precise and further

optimised bandwidth meter pattern, as described in Figure
3. Having three data points every second translates into a
maximum of 55,000 lines worth of data in an astonishing
day. These logs are very important because they tell a story
of the trends in bandwidth utilisation and the anomalies
that could be present in the network traffic in Lab 4,
University of Technology Sarawak, Figure 3.

TEPIAN Vol. 6 No. 2 (June 2025) 85-96 p-ISSN 2721-5350 e-ISSN 2721-5369
Nurcahyo, A. C., Yong , T. H., & Atanda, A. F. (2025). Optimisation of Network Logs for Fake Bandwidth Classification using CNN. TEPIAN, 6(2).

https://doi.org/10.51967/tepian.v6i2.3260

– 89 –

Figure 3. Bandwidth log on RB 1100 AHx Lab 4, University of Technology Sarawak

This stage uses created logs that contain bandwidth
activities, inclusive of the fake, genuine, and inactive
values, alongside login information, script alterations, and
captured activities saved on the disk. The next step is
implementation using deep learning techniques,
particularly neural network models. Applying these
techniques allows for an analysis of the established

patterns to classify the different percentages of genuine,
fake, and inactive users based on their daily activity
history. In this phase, the deep learning model is trained
after the log collection to aid in understanding the patterns
of bandwidth consumption and in finding anomalies in
bandwidth usage using CNN. All network traffic in Lab 4
is captured in ether 1 connection for Tx and Rx, as
illustrated in Figure 4.

Figure 4. Interface ether 1 / main internet connection used for capturing the entire recorded log data.

Following the shift from data collection via Telegram and
the mail server's .txt format for 20 consecutive days, we
will now implement data classification using Python in
conjunction with the CNN algorithm. The extracted and
classified bandwidth data will further undergo evaluation
to derive the metrics and performance indices for the
network.

B. CNN Implementation

The CNN process is a continuation of the data that has
been pre-processed in the backbone network in UTS Lab
4. It entails data preprocessing, cleansing, feature
engineering, labelling, data normalisation, noise filtering,
as well as the training of a deep learning model on the first
day’s dataset, followed by CNN classification and results
presentation in the form of graphs as illustrated in the flow
diagram in Figure 5.

TEPIAN Vol. 6 No. 2 (June 2025) 85-96 p-ISSN 2721-5350 e-ISSN 2721-5369
Nurcahyo, A. C., Yong , T. H., & Atanda, A. F. (2025). Optimisation of Network Logs for Fake Bandwidth Classification using CNN. TEPIAN, 6(2).

https://doi.org/10.51967/tepian.v6i2.3260

– 90 –

Figure 5. CNN Bandwidth Classification Model

The data flow through the CNN pipeline is conducted in a
structured manner, commencing with model training
utilizing complex network logs gathered over five days,
and ending with the classification of real-time data
accumulated over twenty days. Firstly, network logs are
collected second by second from Computer Lab 4 within
the University of Technology Sarawak (UTS). During the
model's training period, logs are gathered for five days,
which represents a broader and more sophisticated range
of data. The dataset includes all forms of network
activities, including extraneous entries, thereby making it
larger in size and challenging for the model to learn from.
The data flow for CNN processing from log acquisition to
training and real-time data classification can be seen in
Figure 6 as follows.

Figure 6. Data Processing Flow of the CNN Algorithm

The training logs are then subjected to a pre-processing
step, in which the unwanted data is removed, missing
values are addressed, and anomalies are corrected. Feature
extraction is subsequently performed, in which data such
as bandwidth values and timestamps are converted into
numerical representations understandable by the CNN
model. The log entries are then tagged as Fake Bandwidth,
Genuine Bandwidth, or No Heavy Activity. This is
followed by data normalization so that all of the features
are scaled to a common range, typically between 0 and 1.
The dataset is split into two datasets: training data and
validation data. This splitting allows us to evaluate the
performance of the model on unseen data. The CNN
architecture is then trained using the given training dataset.
It learns to identify patterns within the data through
convolutional layers, pool layers, and fully connected or

dense layers. The utilization of ReLU activation functions
allows for the addition of non-linearity and thereby
enhances the capabilities of the model to identify more
intricate patterns.

During the training process, the model calculates the
loss value, which is the difference between the predicted
labels and the actual labels. The loss is calculated using the
Categorical Cross-Entropy Loss function, and the model's
internal weights are adjusted using the backpropagation
algorithm to improve accuracy. At the end of the training
process, the model is tested using the validation dataset.
Several performance measures, such as Precision, Recall,
and F1-Score, are used to assess the performance of the
model in classifying entries into the three defined
categories. It is utilized to categorize real-time data only
after the model achieves good accuracy. Logs collected for
twenty days from Computer Lab 4 at UTS are processed at
this stage. This real-time dataset is cleaner and more
precise as it contains only logs related to actual network
activity, those corresponding to Telegram and Mikrotik.
Then the model developed classifies every real-time log
entry into one of the three different categories: Fake
Bandwidth, Genuine Bandwidth, or No Heavy Activity.
The results of the classification process are visualized
using pie charts, trend graphs, and loss-over-epochs graphs
generated during the training process, thus illustrating the
learning progress of the model.

As the first step in the CNN section, information is
collected from the RB 1100 server every second through
the bot @routeruts1100data_bot on Telegram. The
information collected constitutes network logs detailing
users' bandwidth consumption. This data is processed as
the main input in the analysis shown below.

def load_data(file):
 with open(file.name, "r", encoding="utf-8")
as f:
 lines = f.readlines()
 data, labels, bandwidth = [[] for _ in
range(3)]
 for line in lines:
 line = line.strip().lower()
 if "fake bandwidth" in line:
 labels.append("Fake")
bandwidth.append(int(re.search(r'(\d+)',
line).group()))
 elif "genuine bandwidth" in line:
 labels.append("Genuine")
bandwidth.append(int(re.search(r'(\d+)',
line).group()))
 elif "no heavy activity" in line:
 labels.append("No Heavy")
 bandwidth.append(0)
 data.append(line)
 return data, labels, bandwidth

Mathematically, the preprocessing operation can be

written as (1)

X_cleaned = clean_text(X_raw) (1)

where X_raw is the provided data of the unprocessed log,
and X_cleaned is the data after a text cleaning process that

TEPIAN Vol. 6 No. 2 (June 2025) 85-96 p-ISSN 2721-5350 e-ISSN 2721-5369
Nurcahyo, A. C., Yong , T. H., & Atanda, A. F. (2025). Optimisation of Network Logs for Fake Bandwidth Classification using CNN. TEPIAN, 6(2).

https://doi.org/10.51967/tepian.v6i2.3260

– 91 –

removes non-alphanumeric characters and applies text
normalisation. Data obtained from network logs undergo a
preprocessing procedure to ensure that the format is
appropriate for the output of three criteria, which are fake,
genuine, and no heavy; this process consists of text
cleansing and normalisation, as well as formatting the data
to make it ready to be processed as follows.

output = text.lower()
output = re.sub(r'[^a-zA-Z0-9\s]', '', output)
return output

Following the preprocessing, data cleansing was
performed by detecting and resolving missing or invalid
data. Next, normalisation was done to ensure that all data
had a common uniform scale. Normalisation is the process
of changing the scale of data so that features such as
bandwidth speed can be equitably compared. The values
for this normalisation were set by transforming all values
to a range between 0 and 1, represented as follows (2)

X_norm = (X - X_min) / (X_max - X_min) (2)

from sklearn.preprocessing import LabelEncoder
label_encoder = LabelEncoder()
labels_train =
label_encoder.fit_transform(labels_train)

The next step is advanced Feature Engineering, in this

case, Double Bandwidth Detection. At this stage, the aim
is to identify the implementation of dual bandwidth due to
networking anomalies or fraudulent activities, for
example, at over 100 Mbps, as the model only considers
up to 100 Mbps.

X_double = { x | x > 100 Mbps } (3)

Wherein X_double is filtered bandwidth data

containing values greater than 100 Mbps, indicating the
possibility of an anomaly, using the following script.

bandwidth_values = [int(re.search(r'(\d+)',
line).group()) for line in data if
re.search(r'(\d+)', line)]
double_bandwidth_detected = [bw for bw in
bandwidth_values if bw > 100]

Data that has been processed will be labelled to

distinguish genuine bandwidth, fake bandwidth, and no
heavy activity. When data demonstrates an upload speed
from 21.22 to 100 Mbps, the data will be labelled as
genuine bandwidth for both upload and download.
Meanwhile, if the data shows an upload speed of less than
20 Mbps, the data will be labelled as fake bandwidth. Data
without heavy activity will be labelled as no heavy
activity.

if "fake bandwidth" in line:
 labels.append("Fake")
elif "genuine bandwidth" in line:
 labels.append("Genuine")
elif "no heavy activity" in line:
 labels.append("No Heavy")

Based on the above flowchart, the next stage involves
noise filtering to select irrelevant data or errors present in
the log file, such as uncontrolled logon changes or
bandwidth information augmenting that are outside the
scope of fake, genuine, or no heavy, or deleting the so-
called short strings which are devoid of meaning.

filtered_data = [line for line in data if
len(line) > 10]

The main part, that is training data, is done with some

convolution and pooling layers to capture patterns in the
log data of the network. Parameter models such as the
number of convolutional layers, filter size, and epoch were
implemented on the output. The model was then trained
with processed data, while the results were evaluated to
measure the accuracy of classification for fake heavy
bandwidth, genuine heavy, and no heavy bandwidth,
which was over five hundred thousand rows of data. The
batch size utilised in this experiment was 32, which
indicates that, in every iteration of the training, 32 samples
of data will be considered for gradient calculation and
weight update. The core of the CNN model includes
several convolutional layers and pooling layers that
operate on raw input data to learn spatial features.
Mathematically, the convolution operation can be
expressed as follows:

C(i,j) = sum_m sum_n X(i+m, j+n) * W(m,n) (4)

Where X indicates the input data (log data or
bandwidth value), W is the convolutional filter, and C is
the resultant feature map. Filter W learns the spatial
patterns in the data using local analysis windows, which
are then followed by pooling operations to decrease the
dimensions of the feature map and capture the
characteristics by the encoding model as follows:

model = Sequential([
 Embedding(num_words, embedding_dim,
input_length=input_length),
 Conv1D(256, 3, activation='relu'),
 MaxPooling1D(3),
 Conv1D(128, 3, activation='relu'),
 MaxPooling1D(3),
 Conv1D(64, 3, activation='relu'),
 MaxPooling1D(3),
 GlobalMaxPooling1D(),
 Dense(128, activation='relu'),
 Dropout(0.5),
 Dense(num_classes, activation='softmax')
])
 model.compile(loss='categorical_crossentropy',
optimizer='adam', metrics=['accuracy'])
 return model

TEPIAN Vol. 6 No. 2 (June 2025) 85-96 p-ISSN 2721-5350 e-ISSN 2721-5369
Nurcahyo, A. C., Yong , T. H., & Atanda, A. F. (2025). Optimisation of Network Logs for Fake Bandwidth Classification using CNN. TEPIAN, 6(2).

https://doi.org/10.51967/tepian.v6i2.3260

– 92 –

After the CNN model has been trained with the initial
data, model evaluation is carried out by testing the data to
see the accuracy obtained from outside. The classification
results are then visualised in a pie chart depicting the
distribution of categories.

category_distribution =
"category_distribution.png"
plt.figure(figsize=(8, 6))
labels = ['Fake Bandwidth', 'Genuine Bandwidth',
'No Heavy Activity']
sizes = [fake_detected, genuine_detected,
no_heavy_detected]
def func(pct, allvalues):
 absolute = int(np.round(pct / 100.*
np.sum(allvalues)))
return f"{pct:.1f}%\n({absolute:d})"
plt.pie(sizes, labels=labels, autopct=lambda
pct: func(pct, sizes), startangle=140)

The output of the main step that occurs in this

application is the uploading of data or files. The user can
upload network log files in the form of Daily.txt, which
contains records of bandwidth speed activity over 24 hours
at three-second intervals. The data in the first capture was
trained in the first 20 days; later, this training was used as
real-time data, processed daily, and updated automatically
from the mail server and monitoring Telegram, as shown
in Figure 6 model of the upload dataset.

Figure 6. Dataset Upload Model

In the deep learning model training process, this
application issues two parameters subject to manual
configuration as outputs: epoch and batch size. An epoch,
also referred to as an iteration, is a complete forward and
backward pass of all the training data through the model.
In this context, the maximum number of epochs is set to
2000, which is sufficient to enable the model to deeply
learn the patterns within the bandwidth data. Batch size is
referred to as the number of records that are processed in a
single cycle of weight update. In this case, a batch size of
32 was used, meaning that 32 samples were processed
every time the model performed an update, as illustrated in
Figure 7.

Figure 7. Python based CNN Log Classifier Model

During training, the CNN model performed a deep
analysis of the incoming log data. Each epoch provided
new learning for the model to be able to identify features
from the three categories of bandwidths. Genuine
Bandwidth pertains to network activities that display
legitimate and real bandwidth usage. Fake Bandwidth, on
the other hand, refers to the activity in which there is less
than 15% of the allowed 100 Mbps bandwidth utilisation
(in which case 200 Mbps is used but there is a tolerance
limit of 20 Mbps) to show a high level of utilisation
without any actual data traffic for 24 hours a day for every
second. Moreover, the No Heavy Activity evidence shows
having little or no significant bandwidth activity. The
model was first trained, and the next step was to evaluate
the model using the test data that was set aside. The model
was tested for the degree of accuracy on how it classifies
new data from the set of three predetermined categories, as
shown in Figure 8.

Figure 8. Python-based CNN Classification Results
Model

III. RESULTS AND DISCUSSIONS

A. CNN Model Evaluation Results

In this study, the CNN architecture was used to classify
network logs into Fake Bandwidth, Genuine Bandwidth,
and No Heavy Activity. The results were obtained from the
bandwidth logs that had been documented from the traffic
graphs into data logs as in the Figures 9 and 10 which are
the results of monitoring and have consumed the
bandwidth resources until downloading 25 Terabytes and
uploading 7 Terabytes for 20 days of bypass bandwidth
monitoring which was later converted to monitoring data
in seconds.

TEPIAN Vol. 6 No. 2 (June 2025) 85-96 p-ISSN 2721-5350 e-ISSN 2721-5369
Nurcahyo, A. C., Yong , T. H., & Atanda, A. F. (2025). Optimisation of Network Logs for Fake Bandwidth Classification using CNN. TEPIAN, 6(2).

https://doi.org/10.51967/tepian.v6i2.3260

– 93 –

Figure 9. Network Traffic Model

The data depicted in Figures 8 and 9 was converted into
a .txt format and sent from the mail server
phdscm01@uts.edu.my over port 587, which is utilized for
the transmission of emails encrypted using Secure SMTP
(SMTPS). The information is, on average, 3-6 MB per file
per day. It is to be uploaded as real-world data that has
been classified using CNN and needs to be processed.

Figure 10. Monitoring Results for 20 Days from RB 1100
AHx in Lab 4 UTS

CNN was used to classify internet logs of Fake

Bandwidth, Genuine Bandwidth, and No Heavy Activity.
For the evaluation, Precision, Recall, F1-Score, and
Support were calculated for each category. The use of
these metrics is crucial to assess the effectiveness of the
model in log data pattern classification. After training the
model with 2000 epochs, the evaluation results are
presented in Table 1.

Table 1. Precision, Recall, and F1-Score Test Results
Type Precision Recall F1-Score Support

Fake
Bandwidth

0.89 0.90 0.89 170544

Genuine
Bandwidth

0.92 0.95 0.93 378289

No Heavy
Activity

0.98 0.84 0.91 19382

Based on the table above, we observe that Genuine
Bandwidth possesses very high Precision and Recall (0.92
and 0.95), which suggests that this model is highly
accurate in distinguishing valid network activities. On the
other hand, while Fake Bandwidth had a lower Precision
(0.89), the higher Recall (0.90) suggests that the model is
very aggressive in detecting fake bandwidths. No Heavy
Activity has astonishingly high Precision (0.98) with lower
Recall (0.84), which implies that though this category is
detected accurately, the model does not capture all
pertinent entries. This is corroborated by the pie chart
results in Figure 11, as obtained from the application.

Figure 11. Bandwidth Distribution Model from CNN
Classification at Lab 4 UTS

The evaluation was carried out using the metrics of
Precision, Recall, F1-Score, and Support for each
category. The importance of these metrics is vital when it
comes to assessing the effectiveness of a model in
recognizing patterns in the log data.

B. Loss Over Epochs

On the external analysis of this application,
calculations were made for the Loss Over Epochs graph
that illustrates the loss value during training over 2,000
epochs, which took 7 hours of processing. This evidence
illustrates the level of prediction error made by the model
in relation to the actual prediction results versus the real
labels. Categorical cross-entropy was used to calculate
loss, and its mathematical expression is (4)

Loss = - Σ y_i log(ŷ_i) (4)

Where y_i is the target value for class i, and ŷ_i is the

predicted probability of the model for that class. From the
training results displayed in Figure 12, it is evident that the
loss value decreases sharply, which indicates that the
model learns these things very quickly because the log data
was already distributed properly according to the required
criteria, although it necessitated the router and server to
perform at a high resource cost.

Figure 12 illustrates that CNN classified bandwidths
for the first time during training. The loss was
approximately equal to 1.0 at epoch zero, then sharply
decreased to 0.5 by epoch 100, indicating that the model
was beginning to assimilate data swiftly. Subsequently,

TEPIAN Vol. 6 No. 2 (June 2025) 85-96 p-ISSN 2721-5350 e-ISSN 2721-5369
Nurcahyo, A. C., Yong , T. H., & Atanda, A. F. (2025). Optimisation of Network Logs for Fake Bandwidth Classification using CNN. TEPIAN, 6(2).

https://doi.org/10.51967/tepian.v6i2.3260

– 94 –

from epochs 100 to 500, the loss reduction rate slowed
down progressively, hitting approximately 0.2, which
indicates the model was nearing the convergence point.
Within the region of epochs 500 to 1000, the loss
continued to decrease and reached around 0.1, which
indicated that the model was becoming more effective in
reducing the prediction errors.

Figure 12. Loss Over Epochs of the CNN Classification
Results

At the 2000th epoch, which is the end of the training

period, the loss value was around 0.05, which is incredibly
low and suggests that the model achieved optimal
convergence, where the prediction error is nearly zero. The
use of epochs shows that the robustness of the model can
be increased by using techniques where the learning rate
can be dropped at certain points during training. Figure
13 shows the CNNs processing in this study.

Figure 13. Epoch Processing on CNN to Obtain Accuracy
and Loss Over Epochs

C. Results of the Novelty of The Research (Network Log
Optimisation)

The novelty of the results in this research refers to the
consideration of using network logs captured in real-time
over 20 continuous days, with data collection frequency
every second, to uncover fake bandwidth or more than
500,000 lines of data used to train the CNN model. With
the presence of real-time network logs, there is room for a

more dynamic and accurate approach in monitoring the
utilization of large-scale computer networks using log
monitoring and CNN-based classification. The success in
classifying hundreds of thousands of lines of logs
demonstrates CNN's extraordinary advantages in
operating on big data and ability to capture very subtle
phenomena in complex data that as shown:
Detected Fake Bandwidth : 170544 (30.01%)
Detected Genuine Bandwidth : 378289 (66.57%)
Detected No Heavy Activity : 19382 (3.41%)

The log analysis approach can overcome the
difficulties posed by traditional techniques that rely on
larger time frames or sparse data. The results from this
CNN model show a high classification accuracy, even
when working with a large amount of data in real time.
This model validated the notion that CNNs can be
modified and enhanced for the application of everyday
real-time data, which requires instant classification along
with a very high accuracy level, as evidenced in Figure 14.

Figure 14. CNN Application Model for Lab 4 UTS

IV. CONCLUSION

This study demonstrated that the CNN model can be
used to classify network logs to detect fake bandwidth,
genuine bandwidth, and no heavy activity with high
accuracy using log data collected in real-time every second
for 20 days. This CNN model has proven capable of
processing over 500,000 lines of log data at once,
demonstrating the model's ability to recognise very
complex and subtle patterns in large volumes of data that
traditional methods struggle with. CNN successfully
classified genuine bandwidth with high accuracy,
evidenced by model performance evaluation based on
metrics of: Precision 0.92, Recall 0.95, fake bandwidth
detected with Precision 0.89 and Recall 0.90, and no heavy
activity detected with Precision 0.98 and Recall 0.84. The
Loss Over Epochs results show that as the number of
epochs increased, the CNN model experienced a decrease
in loss from 1.0 at epoch 0 to 0.05 at epoch 2000. This
estimate revealed that the CNN model successfully

TEPIAN Vol. 6 No. 2 (June 2025) 85-96 p-ISSN 2721-5350 e-ISSN 2721-5369
Nurcahyo, A. C., Yong , T. H., & Atanda, A. F. (2025). Optimisation of Network Logs for Fake Bandwidth Classification using CNN. TEPIAN, 6(2).

https://doi.org/10.51967/tepian.v6i2.3260

– 95 –

minimised prediction errors with a stable training process
that approached an optimal convergence point indicated by
the decrease in loss. As part of the key innovation in this
research, the optimisation of real-time network log
collection and processing using CNN has proven effective
on dynamically distributed data. Because the data is
gathered systematically every second, the CNN model can
classify it with great accuracy, even at a very large scale.
This approach not only improves the accuracy of detecting
imprecise manipulative fake bandwidth, but also greatly
aids fake bandwidth detection and network monitoring
optimisation in real-time responsive environments.

REFERENCES

Abdfilminaam, D., Alfarouk, S., Fouad, K., Slait, R., &
Wasfy, R. (2024). Optimizing Brain Tumor
Detection: Enhancing Diagnostic Accuracy in Brain
Tumor Detection Using A Hybrid Approach of
Machine Learning and Deep Learning Models. 2024
International Mobile, Intelligent, and Ubiquitous
Computing Conference (MIUCC), 1-8.
https://doi.org/10.1109/MIUCC62295.2024.107835
26.

Alhammadi, O., & Abul, O. (2024). Real-time Web Server
Log Processing with Big Data Technologies. 2024
Innovations in Intelligent Systems and Applications
Conference (ASYU), 1-8.
https://doi.org/10.1109/ASYU62119.2024.1075703
3.

Alrubayyi, H., Goteng, G., & Jaber, M. (2023). AIS for
Malware Detection in a Realistic IoT System:
Challenges and Opportunities. Network, 3, 522-537.
https://doi.org/10.3390/network3040023.

Antonius, F., Sekhar, J., Rao, V., Pradhan, R., Narendran,
S., Borda, R., & Silvera-Arcos, S. (2023). Unleashing
the power of Bat optimized CNN-BiLSTM model for
advanced network anomaly detection: Enhancing
security and performance in IoT
environments. Alexandria Engineering Journal.
https://doi.org/10.1016/j.aej.2023.11.015.

AsSadhan, B., AlShaalan, R., Diab, D., Alzoghaiby, A.,
Alshebeili, S., Al-Muhtadi, J., Bin-Abbas, H., & El-
Samie, F. (2020). A robust anomaly detection method
using a constant false alarm rate
approach. Multimedia Tools and Applications, 79,
12727 - 12750. https://doi.org/10.1007/s11042-020-
08653-8.

Biswal, P., & Karekar, P. (2024). An Analytic Study of
The Relationship Between Internet Connectivity and
Productivity in The Workplace. Journal of
Informatics Education and Research.
https://doi.org/10.52783/jier.v4i1.635.

Cermák, M., Fritzová, T., Rusňák, V., & Sramkova, D.
(2023). Using relational graphs for exploratory
analysis of network traffic data. Forensic Science
International: Digital Investigation.
https://doi.org/10.1016/j.fsidi.2023.301563.

Collier-Brown, D. (2024). You Don't Know Jack about
Bandwidth: If you're an ISP and all your customers

hate you, take heart. This is now a solvable
problem. Commun. ACM, 67, 38-41.
https://doi.org/10.1145/3674953.

Dolgui, A., & Ivanov, D. (2021). 5G in digital supply chain
and operations management: fostering flexibility,
end-to-end connectivity and real-time visibility
through internet-of-everything. International
Journal of Production Research, 60, 442 - 451.
https://doi.org/10.1080/00207543.2021.2002969.

Dong, S., Xia, Y., & Peng, T. (2021). Network Abnormal
Traffic Detection Model Based on Semi-Supervised
Deep Reinforcement Learning. IEEE Transactions
on Network and Service Management, 18, 4197-
4212. https://doi.org/10.1109/tnsm.2021.3120804.

Duan, X., Fu, Y., & Wang, K. (2022). Network traffic
anomaly detection method based on multi-scale
residual classifier. Comput. Commun., 198, 206-216.
https://doi.org/10.1016/j.comcom.2022.10.024.

Fadlil, A., Umar, R., Sunardi, .., & Nugroho, A. (2022).
Comparison of Machine Learning Approach for
Waste Bottle Classification. Emerging Science
Journal. https://doi.org/10.28991/esj-2022-06-05-
011.

Fotiadou, K., Velivasaki, T., Voulkidis, A., Skias, D.,
Tsekeridou, S., & Zahariadis, T. (2021). Network
Traffic Anomaly Detection via Deep Learning. Inf.,
12, 215. https://doi.org/10.3390/info12050215.

Giordano, G., Palomba, F., & Ferrucci, F. (2022). On the
use of artificial intelligence to deal with privacy in
IoT systems: A systematic literature review. J. Syst.
Softw., 193, 111475.
https://doi.org/10.1016/j.jss.2022.111475.

Gomes, R., Bittencourt, L., Madeira, E., Cerqueira, E., &
Gerla, M. (2016). A combined energy-bandwidth
approach to allocate resilient virtual software defined
networks. J. Netw. Comput. Appl., 69, 98-106.
https://doi.org/10.1016/j.jnca.2016.02.024.

Hapsari, L. (2022, July 12). Kecepatan internet Indonesia
paling lambat di Asia Tenggara, apa penyebabnya?
Kumparan.
https://kumparan.com/listyanihapsari171/kecepatan-
internet-indonesia-paling-lambat-di-asia-tenggara-
apa-penyebabnya-1yRrujdWhgj

Jhaveri, R., Ramani, S., Srivastava, G., Gadekallu, T., &
Aggarwal, V. (2021). Fault-Resilience for
Bandwidth Management in Industrial Software-
Defined Networks. IEEE Transactions on Network
Science and Engineering, 8, 3129-3139.
https://doi.org/10.1109/tnse.2021.3104499.

Komadina, A., Martinić, M., Groš, S., & Mihajlović, Ž.
(2024). Comparing Threshold Selection Methods for
Network Anomaly Detection. IEEE Access, 12,
124943-124973.
https://doi.org/10.1109/ACCESS.2024.3452168.

Lyu, S., & Liu, J. (2021). Convolutional Recurrent Neural
Networks for Text Classification. J. Database
Manag., 32, 65-82.
https://doi.org/10.4018/jdm.2021100105.

Lv, D., Cheng, X., Zhang, J., Zhang, W., Zhao, W., & Xu,
H. (2022). DDoS attack detection based on CNN and

TEPIAN Vol. 6 No. 2 (June 2025) 85-96 p-ISSN 2721-5350 e-ISSN 2721-5369
Nurcahyo, A. C., Yong , T. H., & Atanda, A. F. (2025). Optimisation of Network Logs for Fake Bandwidth Classification using CNN. TEPIAN, 6(2).

https://doi.org/10.51967/tepian.v6i2.3260

– 96 –

federated learning. Proceedings of the 2021 Ninth
International Conference on Advanced Cloud and
Big Data (CBD), 236-241.
https://doi.org/10.1109/CBD54617.2021.00048

Magnani, S., Risso, F., & Siracusa, D. (2022). A Control
Plane Enabling Automated and Fully Adaptive
Network Traffic Monitoring With eBPF. IEEE
Access, 10, 90778-90791.
https://doi.org/10.1109/ACCESS.2022.3202644.

Najar, A., & S, M. (2024). Cyber-Secure SDN: A CNN-
Based Approach for Efficient Detection and
Mitigation of DDoS attacks. Comput. Secur., 139,
103716. https://doi.org/10.1016/j.cose.2024.103716.

Oji, C., Nwankokwo, O., & Adu, C. (2021). Development
Of An Enhanced Bandwidth Control Platform For
Effective Monitoring And Utilization In Corporate
Networks. International Journal of Scientific and
Research Publications (IJSRP).
https://doi.org/10.29322/ijsrp.11.08.2021.p11636.

Onietan, C., Martins, I., Owoseni, T., Omonedo, E., & Eze,
C. (2023). A Preliminary Study on the Application of
Hybrid Machine Learning Techniques in Network
Intrusion Detection Systems. 2023 International
Conference on Science, Engineering and Business
for Sustainable Development Goals (SEB-SDG), 1,
1-7. https://doi.org/10.1109/SEB-
SDG57117.2023.10124596.

Pham, H., Nguyen, V., Tran, N., & Nguyen, M. (2023).
Log Analysis For Network Attack Detection Using
Deep Learning Models. Proceedings of the 12th
International Symposium on Information and
Communication Technology.
https://doi.org/10.1145/3628797.3628943.

Razian, M., Fathian, M., Bahsoon, R., Toosi, A., & Buyya,
R. (2022). Service composition in dynamic
environments: A systematic review and future
directions. J. Syst. Softw., 188, 111290.
https://doi.org/10.1016/j.jss.2022.111290.

Ring, J., Van Oort, C., Durst, S., White, V., Near, J., &
Skalka, C. (2021). Methods for Host-Based Intrusion
Detection with Deep Learning. Digital Threats:
Research and Practice.
https://doi.org/10.1145/3461462.

Saha, S., Haque, A., & Sidebottom, G. (2022). An
Empirical Study on Internet Traffic Prediction Using
Statistical Rolling Model. 2022 International
Wireless Communications and Mobile Computing
(IWCMC), 1058-1063.
https://doi.org/10.1109/IWCMC55113.2022.982505
9

Sari, M., Ningki, C., Rosa, F., Novando, K., & Mukin, Y.
(2023). Analysis of Bandwidth Management Quality
of Internet Network Services at the Shanti Bhuana
Institute. Journal of Information Technology.
https://doi.org/10.46229/jifotech.v3i1.666.

Shi, J., Fu, K., Wang, J., Chen, Q., Zeng, D., & Guo, M.
(2024). Adaptive QoS-Aware Microservice
Deployment With Excessive Loads via Intra- and
Inter-Datacenter Scheduling. IEEE Transactions on

Parallel and Distributed Systems, 35, 1565-1582.
https://doi.org/10.1109/TPDS.2024.3425931.

Šabanović, K., Arendt, C., Fricke, S., Geis, M., Böcker, S.,
& Wietfeld, C. (2024). AI-Based Anomaly Detection
for Industrial 5G Networks by Distributed SDR
Measurements. 2024 IEEE International Symposium
on Measurements & Networking (M&N), 1-5.
https://doi.org/10.1109/MN60932.2024.10615402.

Wang, S., Balarezo, J., Kandeepan, S., Al-Hourani, A.,
Chavez, K., & Rubinstein, B. (2021). Machine
Learning in Network Anomaly Detection: A
Survey. IEEE Access, PP, 1-1.
https://doi.org/10.1109/ACCESS.2021.3126834.

Wen, H., Yu, J., Pan, G., Chen, X., Zhang, S., & Xu, S.
(2022). A Hybrid CNN-LSTM Architecture for High
Accurate Edge-Assisted Bandwidth Prediction. IEEE
Wireless Communications Letters, 11, 2640-2644.
https://doi.org/10.1109/LWC.2022.3213017.

Ye, M., Member, I., Member, I., & Fellow, I. (2023).
FlexDATE: Flexible and Disturbance-Aware Traffic
Engineering With Reinforcement Learning in
Software-Defined Networks. IEEE/ACM
Transactions on Networking, 31, 1433-1448.
https://doi.org/10.1109/TNET.2022.3217083.

Zhang, H., Zhang, L., Yang, Z., Lyu, Z., Yang, H., Zhang,
C., Bobrovs, V., Ozoliņš, O., Pang, X., & Yu, X.
(2024). Equivalent Photoconductive Time-Domain
Sampling for Monitoring High-Speed Terahertz
Communication Signals. Journal of Lightwave
Technology, 42, 4476-4484.
https://doi.org/10.1109/JLT.2024.3372382.

Zhang, Y., Liu, W., Kuok, K., & Cheong, N. (2024).
Anteater: Advanced Persistent Threat Detection With
Program Network Traffic Behavior. IEEE Access,
12, 8536-8551.
https://doi.org/10.1109/ACCESS.2024.3349943.

Zhao, M., Gahrooei, M., & Ilbeigi, M. (2024). Change
Detection in Partially Observed Large-Scale Traffic
Network Data. IEEE Transactions on Intelligent
Transportation Systems, 25, 18913-18924.
https://doi.org/10.1109/TITS.2024.3440836.

Zhuang, G. (2024). Research on Large-scale Data
Anomaly Detection based on Deep Learning. 2024
5th International Conference on Information
Science, Parallel and Distributed Systems (ISPDS),
249-252.
https://doi.org/10.1109/ISPDS62779.2024.1066757
0.

