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Abstract— Hardly will someone acknowledge that the 

bandwidth we use every day is as authentic as most ISPs 

advertise, even those offering dedicated services. There are 

usually shortcomings, especially on upload and download 

bandwidth speeds. This paper presents the classification of 

simulated fake bandwidth data using the Long Short-Term 

Memory model, which though seldom found, is a very 

effective approach in network analysis. There were 1400 

bandwidth data points collected from the MikroTik RB 

1100 AHx device in a month, then further processed with 

normalization, and divided to have 80% training and 20% 

testing. The LSTM model applied had an accuracy rate of 

98.93%, proving that it is capable of classifying either 

genuine or fake bandwidth instances accordingly. Of 1,400 

test data points, the model managed to classify 723 as fake 

bandwidth and another 677 as genuine, resulting in a 

classification error rate of only 1.07%. The results clearly 

prove that LSTM has huge potential for real-time 

bandwidth manipulation detection, key to enhancing trust 

and efficiency in network management. In this respect, this 

research shows that bandwidth analysis combined with 

LSTM can be an original solution for network monitoring.  
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I. INTRODUCTION 

Bandwidth allocation integrity has been the paramount 

issue in the modern networking scene. This is because, 

nowadays, with internet service providers under increasing 

scrutiny for alleged practices of bandwidth manipulation 

to maximize their profit at the cost of customer experience, 

the situation has become critical (Varriale et al., 2024; 

Abbasloo, 2023; Jay et al., 2018). The issue of "fake 

bandwidth," where this happens due to an artificially 

inflated or throttled bandwidth measurement by an ISP, 

raises some serious ethical dilemmas about transparency 

and trust between the service provider and its customers in 

a network (Tilaye & Gojeh, 2020; Kim, 2014). This 

bandwidth manipulation, as a practice, can harm 

consumers directly because they do not receive the levels 

of internet service promised by the ISPs and undermine 

public confidence in the industry related to 

telecommunications (Azamuddin et al., 2020).  

The term "fake bandwidth" refers to a situation whereby 

some Internet Service Providers willfully throttle or 

artificially inflate bandwidth measurements to cause 

customers the perception of faster Internet (The Drivers of 

Broadband Internet in Malaysia, 2023). This has become 

very controversial, involving heated debate within the 

telecommunications industries, regulatory bodies, and 

consumers at large. While this may just be a simple 

manipulation of algorithms for bandwidth management 

from an engineering point of view, it falls within the wider 

purview of ways an ISP can otherwise strip a customer of 

knowledge on network resources optimization (Said & 

Adham, 2015; Subektiningsih et al., 2022). The increasing 

number of consumer complaints about inconsistent 

internet speeds that is, advertisements at certain speeds are 

not always reflected in real-world performance has meant 

that various investigations and studies have been 

commissioned and conducted which reveal that some ISPs 

do have the ability to manipulate the reported bandwidth 

data (Dasmen & Khudri, 2021; Measuring Broadband 

America, 2023). It has evolved into a serious ethical issue, 

for it might directly hurt consumers who do not get the 

levels of internet service promised by the providers, and it 

could undermine faith in the industry within the psyche of 

the public (Li et al., 2019; MacMillan et al., 2022). 

The fake bandwidth controversy has been receiving 

great attention of late following the emergence of high-

profile cases in a number of countries. For example, 

investigations into some major ISPs in some developed 

countries have discovered that some were engaging in 

manipulation of the internet speeds they were offering 

customers (Redirecting DNS for Ads and Profit, 2023) (Mi 

et al., 2019) (Flach et al., 2016). Service providers, on the 

other hand, can reduce internet speed at times or regions to 

reduce their load, but still report a higher speed to 

customers due to bandwidth management that can still 

increase the ICMP and traffic sides (Bergman et al., 2018) 

(Balarezo et al., 2020) (Tilaye & Gojeh, 2020). This can 

be viewed as a lie to customers, for they are not accorded 

the services of internet levels they were promised, and this 

bandwidth manipulation practice can undermine public 

trust in the industry of telecommunications (Tilaye & 

Gojeh, 2020; Choffnes et al., 2017; Sait et al., 2016). 

The artificial bandwidth problem is also a growing 

concern in Indonesia, where there is an increasing 
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dependence of the community on the internet for both 

business and personal needs (Budiman & Alam, 2017; 

Suryanegara et al., 2018; Antoni & Asvial, 2019; Dwiardi, 

2020). Some Indonesian ISPs even have bandwidth 

manipulation practices, either by throttling internet speeds 

for specific applications or during certain periods, while 

simultaneously promoting consistent and advertised 

internet speeds to their subscribers (Bagus & Suryanegara, 

2017; Indonesia WiFi Access Innovation, 2023; Aryotejo 

& Mufadhol, 2019). This bandwidth throttling and 

misrepresentation practice is very questionable, as it harms 

customers in a straight line by not providing the level of 

internet services that were specified to them by the 

payment they have done, and further can undermine public 

trust in the whole telecommunications industry within the 

country itself (Measuring Fixed Broadband - Eighth 

Report, 2023; Bayat et al., 2022; & Dasmen, 2019). 

The degree of bandwidth optimization taking place is 

what past research attempted to discover and quantify 

(Need, Want, Can Afford: Broadband Markets and the 

Behavior of Users, 2023; Anderson, 2013; Kim, 2014). 

Conversely, the outcome frequently emerges as 

controversial and provokes wider debate. Some studies 

have shown massive discrepancies between the reported 

internet speeds by the ISPs and actual real-world speeds 

faced by users, thus proving that ISPs are manipulating the 

bandwidth data reported (Feamster & Livingood, 2019; 

MacMillan et al., 2022; Mukti & Dasmen, 2019). Other 

studies, however, have demonstrated that these speed 

deviations can be triggered by a variety of legitimate 

technical factors, including distance from the distribution 

center or user device capacity, affecting the real internet 

speed experience of consumers (Pariag & Brecht, 2017; 

Nyarko-Boateng et al., 2019). This thereby progresses an 

ongoing debate in this area, underlining a clear 

requirement for more rigorous investigations so that the 

true cause of the discrepancies between advertised internet 

speeds and real-world Speeds may be determined (Bauer 

et al., 2010; Capone et al., 2023). 

This, however, is still an undeniable hot topic, more so 

considering the relevance of the internet that increases day 

by day today (Feamster & Livingood, 2019; Sharma et al., 

2023). Transparency and reliability are what consumers 

are banking on from services they are paying for, and once 

consumers feel deceived by unethical practices in which 

bandwidth manipulation falls into, it can undermine their 

trust in ISPs (Massarczyk & Winzer, 2019). It is therefore 

upon this research to come up with better methods for 

detection and classification of fake bandwidth, which will 

help the consumers and regulators ensure that ISPs indeed 

provide services consistent with their promise (Zhou et al., 

2018; Zhou et al., 2018). 

In particular, it focuses on developing a high-accuracy 

classification model for the detection of fake bandwidth by 

using a Long Short-Term Memory network based on 

collected network activity data from MikroTik devices. 

Long Short Term Memory (LSTM) is a kind of RNN 

crafted to learn long-term dependencies (Yang et al., 2023; 

Donahue et al., 2015; Azzouni & Pujolle, 2017). An LSTM 

is one of the most interesting components of network 

analysis, especially when dealing with sequential data for 

instance, network activities are normally temporal by 

nature. Another critical challenge regarding network 

analysis involves handling time-sequenced data where past 

information is critical in understanding future trends 

(Ribeiro et al., 2013; Saqr, 2023). LSTM operates with a 

unique mechanism, consisting of three main elements 

known as gates, the input gate, forget gate, and output gate 

(Yoon et al., 2023). The purpose of these gates is to 

manage the information flow, deciding which data to 

retain, eliminate, or utilize for producing an output. In 

contrast to traditional recurrent neural networks (RNNs), 

which frequently encounter difficulties related to the 

vanishing gradient issue, long short-term memory (LSTM) 

networks are adept at preserving pertinent information for 

extended durations. This characteristic renders LSTM 

particularly appropriate for network analyses that 

necessitate an understanding of temporal data patterns 

(Staudemeyer & Morris, 2019; Greff et al., 2017). LSTM 

can be used to detect anomaly patterns, predict network 

congestion, or even identify suspicious user behavior with 

high accuracy (Cheng et al., 2016; Karim et al., 2018; 

Sherstinsky, 2020). The ability of LSTMs to remember 

long-term information while predicting behavior extracted 

from sequences in data provides great value when 

modeling and analyzing bandwidth, data usage, or network 

flow optimization (Bi et al., 2022; Sherstinsky, 2020; 

Wang et al., 2021). It is able to detect patterns in the given 

dataset and is utilized for producing accurate forecasts or 

classification regarding network performance. The 

effectiveness of the LSTM would be higher, such that the 

detection of long-term patterns concerning network 

analysis has been achieved (Zhang et al., 2022; Bi et al., 

2022). In contemporary network analysis, more 

sophisticated methodologies, such as the Long Short-Term 

Memory (LSTM) technique, are required (Sherstinsky, 

2020; Tao et al., 2022). The conventional manual methods 

that are still prevalent among MikroTik users and network 

administrators are limited in their ability to fully exploit 

the available data (Macura et al., 2017; Song et al., 2020). 

Administrators typically concentrate on network 

monitoring through reactive approaches and static 

configurations, neglecting the fact that real-time data 

collection contains intricate and valuable information for 

prediction and optimization (D’Alconzo et al., 2019). By 

incorporating LSTM, network administrators can detect 

trends, potential congestion, or anomalies at an earlier 

stage, without relying on manual adjustments or 

reconfigurations that may disrupt operations (Lu & Yang, 

2018; Ye et al., 2022). This approach facilitates the 

transition from reactive to proactive management, paving 

the way for future network transformation, while ensuring 

optimal performance without adding strain to the existing 

infrastructure. The vast potential of collected network data 

remains untapped without methodologies like LSTM, 

hindering the full utilization of network efficiency and 

reliability, which has been a persistent challenge thus far 

(Waczyńska et al., 2021; Casas, 2020). Exploiting the 

power of deep learning and real-world availability of 

network data, this work adds to the efforts in progress 
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toward rectifying manipulations on bandwidth and the 

eventual restoration of faith in the telecommunications 

industry. 

 

II. RESEARCH METHODS 

A.  Network Design Model 

Beginning from a default reset on the MikroTik router, 

a new admin password was input, and then the network 

interface was configured with CLI scripting. The WAN 

connects the LAN to the Internet and requires a public IP 

address from the ISP to this model of router. This would 

act as the internal network to which all client devices 

would connect; the IP addresses used can be /16 and /24. 

Secondly, it must have a DHCP server that should be 

enabled, which would provide the connected computers 

with an IP address automatically between 192.168.20.1 

and 192.168.21.253. This would be two IP segments to use 

more IPs. Second, NAT and routing configurations are 

done. Masquerade NAT is applied on the WAN interface 

to save on public IPs. Remote access is allowed via 

OpenVPN for easier remote control. The OpenVPN server 

scripting is as follows: 

 

client 

dev tun 

proto tcp 

remote id-17.hostddns.us 1194 

resolv-retry infinite 

nobind 

route-method exe 

persist-key 

persist-tun 

remote-cert-tls server 

cipher AES-128-CBC 

auth SHA1 

auth-user-pass pass.txt 

verb 2 

<ca> 

-----BEGIN CERTIFICATE----- 

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxx 

-----END CERTIFICATE----- 

</ca> 

 

Meanwhile, on the RB 1100 AHx router, the OpenVPN 

configuration can be set up as follows: 

 

/interface ovpn-client add connect-

to=id-17.hostddns.us name= 
pic24030001@student.uts.edu.my 

password=xxxxxx user= 

pic24030001@student.uts.edu.my 

comment=id-17.hostddns.us:5010<->23 

 

Static routing is also configured to route traffic from the 

local network to the ISP and to correctly assign all paths, 

so that there is proper allocation for local access, high-

bandwidth access, and access to local servers. A firewall is 

then established, this blocks all types of traffic coming into 

the system from an external source, except for pre-defined 

established and related connections. That way, data 

packets as part of an ongoing connection still can cross 

through the firewall. Moreover, it allows DNS and DHCP 

to pass through, so the network can run without 

interruptions. Two techniques are used for easy data 

retrieval, namely, using the syslog daemon to obtain log 

data and active control through the Kid Control feature. 

This feature offers real-time monitoring of internet 

activities over IP and MAC addresses. Logging for all 

events of access control enforcement is enabled when Kid 

Control rules are applied. It will retain the logs on the RB 

1100 AHx in this case since it has enormous storage. 

Further, every action, in real-time, shall be captured by 

these logs, which are also integrated with a syslog daemon. 

The next step was to gather and collect data from the Kid 

Control logs. First, a simulation was made wherein data 

points of around 120 were gathered in one day for training. 

The actual research work followed afterwards with a larger 

scale of log gathering that concluded with the collection of 

up to 7,000 bandwidth data points to be used for further 

analysis. The results from data collection are validated, 

after which it is followed by LSTM classification. In a 

situation where the data collection is invalid or not as 

expected, troubleshooting is carried out through the steps 

of Kid Control by repeating the collection until satisfying 

results are achieved, making it involve download and 

upload activities, IP addresses, connections, activity 

access. The step-by-step flowchart model used in this 

research can be seen in figure 1 as follows 
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Figure 1. Network Model Flowchart Used 

 

At the data link layer, every device has a MAC address 

that serves as its unique identifier. Information in relation 

to the details of the users that have accessed this network 

creates metadata with very vital contextual information, 

enabling linking between usage patterns and user identities 

tied to it. Whether statically or dynamically configured 

using DHCP, the IP address acts as a logical address for 

the network layer. It provides efficient routing of data 

packets to and from devices. This IP address does not 

merely provide a destination for the arriving packets but 

also identifies the source and outbound data paths that, in 

turn, are used to optimize routes and analyze network loads 

at various points. 

Subsequently, the data is collected in the form of rate-up 

and rate-down bandwidth metrics, which account for the 

actual throughput at the transport layer. This sort of data 

may be used to build granular views into how network 

capacity is being consumed and provide direct indicators 

of potential congestion, bottlenecks, or bandwidth use, as 

shown in Figure 2. Moreover, bytes up bandwidth and 

bytes down bandwidth show the volume of data that is 

transmitted and received, which forms the critical metric 

in management bandwidth allocation, capacity planning, 

and enforcing fair usage policies by quota or service 

prioritization in heavy quota based or service priority 

networks. 

 

 

Figure 2. Data Log Collection of Activity and Bandwidth 

on RB 1100 Ahx 

 

Activity logs, therefore, track certain activities 

concerning access to websites or network services that 

come in handy with detailed data concerning the behavior 

of the users within the network for the visited sites. This 

data will be fully used to determine what bandwidth is 

genuine and which ones are fake depending on the data 

collected. The captured image of the bandwidth 

management model in this research can be seen in Figure 

3, and the network configuration consisting of the main 

backbone router, core switch, and manageable switches 

that are integrated for this study can be seen in Figure 4. 
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Figure 3. Bandwidth Management Results on RB 1100  

 

Figure 4. MikroTik Backbone Used (Router Number 2 

RB 1100 AHx) 

 

B. LSTM Implementation 

The Python coding process is carried out on Google 

Colab with a csv dataset that was retrieved from the 

MikroTik configuration. First, NAT, Queue, Firewall, and 

Log Control must be set up so that network devices will be 

able to track and monitor data traffic effectively. As 

illustrated in figure 5, import the .csv file containing 

recorded network data for analysis. Figure 5 illustrates the 

bandwidth classification process using the LSTM model. 

 

 

Figure 5. LSTM Implementation Model 

 

First, it verifies the consistency of column names in the 

imported dataset. Second, cleaning columns converting 

Bytes Down and Bytes Up into units of MiB for ease of 

processing. It assumes the size of data may appear in any 

format, either KiB, MiB, GiB, or TiB, and is hence 

changed into MiB using a simple conversion formula. For 

example, if it's in KiB, the value will be divided by 1024 

to convert it into MiB. Similarly, for GiB and TiB, values 

shall be multiplied by factors of 1024 or 1024^2. 

The next step is to set the bandwidth threshold for the 

classification of the data. This threshold is determined 

from the expected bandwidth speeds, that are 15 Mbps 

download and 10 Mbps upload. These numbers, 15 and 10, 

are the managed bandwidth for download and upload on 

the MikroTik RB 1100 Ahx, used by 50 users 

simultaneously for a period of one month. The speeds are 

converted into MiB from bits per second, with 1 byte taken 

as equal to 8 bits. Download speed of 15 Mbps is converted 

as 15 x 1024^2 / 8, which comes to around 1.788 MiB per 

second for download. The upload speed of 10 Mbps is 

converted as 10 x 1024^2 / 8, which comes to around 1.19 

MiB per second for upload. 

After defining the thresholds, data is labeled as Real 

Bandwidth in cases where bytes_down_mib equals or is 

more than 1.788 MiB/second and bytes_up_mib equals or 

is more than 1.19 MiB/second, otherwise it would be Fake 

Bandwidth. The next step is to make feature selection and 

standardization of those selected features. In this study, 

bytes_down_mib and bytes_up_mib are both normalized 
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with a Min Max Scaler, which embeds these values in the 

range between 0 and 1 so that data is uniformly scaled. 

This normalization is important to be performed so that the 

LSTM model could learn well without suffering from the 

large discrepancies of scales of features. 

After standardization, the data is reshaped in a particular 

manner to be fed into the LSTM model. This prepares the 

data into a 3D format [samples, timesteps, number of 

features]. Given that this model uses just one timestep, the 

data becomes [n_samples, 1, 2], where 2 refers to two 

features that are used bytes_down_mib and bytes_up_mib. 

Data is split into two parts: 80% as training data and 20% 

as testing data. The split is random, which will avoid the 

possibility for the model to try to fit some data points and 

let it generalize well with unseen data. 

The LSTM model has been architected with three 

different LSTM layers. The first layer has 100 units, so 

return_sequences = true allows information contained in 

sequences to pass to the next layers. The second contains 

100 units, return_sequences = true, continuing the learning 

of sequences. The third is composed of 50 units with the 

end of sequences without return_sequences, which marks 

the end of the processing of LSTM sequences. Every 

LSTM layer is followed by a dropout layer, a method used 

to create multiple different models: randomly shut off 

some neurons in the layer during training to avoid 

overfitting. This is followed by two dense layers after the 

LSTM layers with the final layer having a SoftMax 

activation function, classifying the data into two different 

categories Real Bandwidth or Fake Bandwidth.  

Following this, the model is compiled with the Adam 

optimizer, a learning rate of 0.001, and the categorical 

cross entropy loss function since this is a multi-class 

classification transformed into one hot encoding. The 

model will be trained over 50 epochs with a batch size of 

64, and validation during training was performed on the 

test data. Finally, testing is done on the testing dataset after 

training. For every class, a probabilistic prediction is 

computed, and the final predicted labels are determined 

based on the argmax of the predicted probabilities. A 

confusion matrix is then used for the estimation of the 

model performance, showing the number of correct and 

wrong predictions, and a classification report, which 

presents detailed metrics for each class, such as precision, 

recall, and the F1-score. 

It was also constructed with a receiver operating 

characteristic curve to assess the proficiency of the model 

in class separation by computing the Area Under the 

Curve. This would mean that the higher the AUC value, 

the better the model at discriminating classes of Real 

Bandwidth and Fake Bandwidth. 

In results visualization, multiple plots were generated. 

The first set of graphs shows the loss and accuracy during 

the training process, which describes how the model is 

learning and how well it is doing on both the training and 

test data. Plotting the ROC curve shows how well the 

model classifies. It will further be used to visualize the 

Real and Fake Bandwidth distributions of data on, 

respectively, bytes_down_mib and bytes_up_mib features. 

A bar plot could show the count of classifications for each 

class. The final visualization will be a 3D scatter plot of 

the data in bytes_down_mib versus bytes_up_mib, with 

their corresponding labels. This graph provides a 

visualization perspective on how data is spread inside a 

three-dimensional space. The accuracy of the model will 

be given as a percentage of correct predictions on the test 

data, with other metrics that give assessment of how well 

the model is at classifying. 

C. Sample Data Simulation 

Before carrying out the holistic process of data 

collection, a one-day simulation was conducted that 

returned 114 valid data, where classification between real 

and fake bandwidth was done mathematically by 

extracting features, transforming the data, and processing 

sequential data using a Long Short-Term Memory neural 

network. It worked on a dataset containing MAC address, 

IP address, network activity, and bytes downloaded and 

uploaded. Key features for this process were 

bytes_down_mib and bytes_up_mib. These features are of 

major use during this process, which has been converted 

into megabytes per second from their original format in 

MiB. This was done through a function, whereby each 

value of the data, either measured in KiB, MiB, GiB, or 

TiB, was standardized for further analysis. The data was 

then converted, and the next operation was checking if the 

data obtained met the threshold of the real bandwidth. Real 

bandwidth was based on a standard of 15 Mbps for 

download and 10 Mbps for upload, converted to 1.875 

MiB/s download and 1.25 MiB/s upload. Any value above 

the threshold values is therefore considered Real 

Bandwidth, and the rest, Fake Bandwidth. These labels 

were used as targets in the model training process. In this 

simulation, there is an LSTM with a depth of two LSTM 

layers and two dropout layers for overfitting prevention. 

The model was created to discover a pattern in the data that 

would mean real or fake bandwidth usage.  

This processed data was then transformed into 

sequences so that they can be fed into the LSTM model, 

where every example was represented as a sequence 

containing the features bytes_down_mib and 

bytes_up_mib. The model was trained for 30 epochs using 

the Adam optimization algorithm and the binary cross 

entropy loss function. The result of this training returned 

an accuracy of 77.19% against the validation data. 

Confusion matrix analysis showed that only fake 

bandwidth was identified with full accuracy, real 

bandwidth was not detected at all. The detailed results of 

the classification simulation test distinguishing between 

fake bandwidth and real bandwidth, using sample data 

prior to the analysis of the actual 30-day data, are presented 

in Table 1. 
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Table 1. Simulation Results, Classification Report 

  
Precision Recall 

F1-

score 
Support 

0 0.77 1.00 0.87 88 

1 0.00 0.00 0.00 26 

Accuracy   0.77 114 

Macro 

Avg 
0.39 0.50 0.44 114 

Weighted 

Avg 
0.60 0.77 0.67 114 

 

This is a confusion matrix where 114 test data points 

had the model correct in classifying 88 instances as false 

bandwidth but failed to identify a single example from the 

data points that were of real bandwidth. The graph in 

Figure 6 is a monotonically decreasing loss on the training 

data, which therefore shows that the model has learnt from 

the data. 
 

Figure 6. Loss over Epochs for Network Sample Data 

 

Since this loss is decreasing during training, it means 

this model becomes better at capturing the underlying 

pattern of the training dataset. The validation loss, 

however, shows a near stationarity trend, indicating that 

improvements in model performance on the training data 

do not exactly transfer to the validation set. This plateauing 

of the validation loss may indicate that the model is 

reaching its capacity to generalize from the training dataset 

to the unseen data in figure 7. Probably, the process of 

overfitting had started, or further tuning of 

hyperparameters might be required for better 

generalization. 

 

Figure 7. Accuracy over Epochs for Network Sample 

Data 

The model did improve its accuracy during the 

training. One can see from the graph that training accuracy 

tended to stabilize at about 84% while validation accuracy 

remained almost the same at 77.19%. That means it was 

hard for this model to generalize more unseen data, very 

likely due to the small size of the dataset and class 

imbalance.  

 

Figure 8. ROC Curve for the Sample Network Data 

 

The ROC curve in figure 8 is a graph showing model 

performance based on this trade off of TPR versus FPR. 

Based on the area under the curve value of 0.97, the ROC 

curve highlights how much potential the model has to 

distinguish between these two classes effectively but has 

not been in a position to realize this completely on this 

smaller test dataset mainly because it is poor at generating 

positive predictions. The results of the classification report 

provide details of the metrics in terms of precision, recall, 

and f1-score for each class. It is clearly represented that 

precision and recall for True Bandwidth are zero, therefore 

showing this model has completely failed to detect True 

Bandwidth but has great results while detecting Fake 

Bandwidth as shown in the final sample data results in 

Table 2 for the Confusion Matrix. 

 

Table 2. Simulation Results, Confusion Matrix 

Confusion Matrix 
Predicted 

False 

Predicted 

True 

Actual False 88 0 

Actual True 26 0 

Test Accuracy 77.19% 

 

 

III. RESULT AND DISCUSSION 

A.  Network Configuration Results 

Therefore, the ether1 interface is perfectly managed by 

configuring the bandwidth to the figures recorded with real 

data for one month from July 10, 2024, to August 10, 2024, 

within the system log. Such figures are proven by what is 

shown in the download throughput Rx, which reaches up 

to 10.3 Mbps, and in the upload Tx, which stabilizes at 

1329.0 kbps. These metrics show that the system can keep 

up a high and stable download speed that is consistent with 

the queue configuration put in place. Figure 9 presents the 

graph depicting the performance of the ether1 interface, 

which was connected to the internet gateway and 



TEPIAN Vol. 5 No. 3 (September 2024) 35-47 p-ISSN 2721-5350 e-ISSN 2721-5369 
Nurcahyo, A. C., Yong, A. T. H., & Atanda, A. F. (2024). Classification of Simulated Fake Bandwidth Data Using LSTM. TEPIAN, 

5(3), 35–47. https://doi.org/10.51967/tepian.v5i3.3106  

–  42 –  

distributed to more than 1000 users on the network using 

RB 1100 AHx, operating continuously for 30 days without 

interruption. 

 

 

 

Figure 9. Network Monitoring Graph for Ether 1 on 

MikroTik 

 

The volume of data transferred across the network is 

very large, and the Tx/Rx Bytes, so far recorded, come to 

96.5 GiB for transmitter data and 690.8 GiB for received 

data. These figures underline how busy the network has 

been, which is represented in the traffic graph as a function 

of time and changes/variability in bandwidth use. These 

variations are thus highly relevant indicators of network 

performance and capacity and illustrate peaks of heavy 

usage and troughs of light activity that are important in 

terms of optimizing traffic management and load 

balancing. 

The Tx/Rx Packets metric, which represents the total of 

data packets processed, was 402,307,483 for Tx Packets 

and 647,375,157 for Rx Packets. This high count of 

packets demonstrates the large volume of data transactions 

going on within the network, hence a strong and well-used 

network infrastructure. Tx/Rx Drops remained at zero, 

further confirming the efficiency of data transmission 

processes. No data packets were lost during transit, which 

is very critical to data integrity and reliable communication 

over the network. 

System logs from Kid Control and Sys Daemon Log 

generated detailed logs of activities of every connected 

device, capturing such vital metrics as data volume and 

transfer speed. These logs represent a rich dataset, primed 

for further analysis using an LSTM model in the domain 

of deep learning. Helped by this model, the system can 

then spot subtle patterns in bandwidth usage, thus 

classifying real and fake bandwidth from a dataset of 1400 

records. 

 

B. Results of the LSTM-Based Fake Bandwidth Testing 

Integration of the simulation test results, and 

classification of bandwidth data provides the basis for an 

in-depth discussion on the way a deep learning-based 

system, empowered with the architecture of Long Short-

Term Memory (LSTM) networks, impeccably works in 

distinguishing between real (Real Bandwidth) and fake 

(Fake Bandwidth) bandwidth. This advanced process 

commences with step-by-step preprocessing of the 

uploaded data, which includes some network activity 

metrics such as bytes_down, bytes_up, and ancillary data 

in the face of user browsing behavior, IP addresses, and 

MAC addresses. Systematically, raw data is converted to 

ensure consistency across the dataset and ease of 

computations into bytes_down and bytes_up columns, 

representing the data in MiB (Mebibytes) in a standardized 

form. 

The LSTM model used for this simulation is 

multilayered. The three LSTM layers have different 

numbers of neurons, and smartly implemented Dropout 

layers help to prevent overfitting of the model. The model 

is trained on a preprocessed dataset, which consists of 

1400 data points. Further breaking down this dataset, 80% 

of the data has been used for training and the remaining 

20% for testing the model's efficiency. The outcomes of 

this categorization are then graphed accordingly using 

several more sophisticated visual illustrations, for 

example, scatterplot along with a 3D scatter plot to come 

up with a representation of the distribution of genuine and 

fake bandwidth data based on the measurement of 

bytes_down and bytes_up. This can be observed in the 

results shown in figure 10 for the scatter plot and figure 11 

for the 3D visualization model in detail. This advanced 

analytical approach shows the robustness of the LSTM 

architecture in processing sequenced input data 

characterizing network traffic, thus enabling it to learn 

hidden representations of the patterns distinguishing real 

bandwidth use cases from the ones potentially 

manipulated. The deployment of such a model not only 

enhances our understanding of bandwidth allocation but 

also offers a potent tool for real time monitoring of the 

network and fraud detection. 

 

 

Figure 10. Scatter Plot for Fake and Real Bandwidth 
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Figure 11. 3D Visualization Model of Fake and Real 

Bandwidth 

 

Scatter plots show that the real bandwidth data, on 

average, is concentrated either in the center or in a specific 

area of the graph, whereas the fake bandwidth data is 

scattered, clearly highlighting the gap between the two 

categories. As shown in the Confusion Matrix, which was 

obtained from the testing phase, the model’s accuracy is 

98.93%, which is very high and hence excellent. Out of 

1400 test data points, the model correctly classified 708 

instances of fake bandwidth and 677 instances of real 

bandwidth. Only 15 data points were misclassified, 

underscoring how well the model performed in 

differentiating between genuine and counterfeit bandwidth 

data. This evidence can be seen in figure 12. 

 

Figure 12. Confusion Matrix Result 

 

It is quite evident from the Classification Report that the 

model performed with very high precision and high recall 

values close to 1.00 for both classes, such as real and fake 

bandwidth. This looks like the description of a highly 

accurate model in predicting the correct class, yet very 

consistent in making sure it reduced classification errors. 

This performance underlines the model's robustness and 

reliability to efficiently recognize either category of 

bandwidth, hence with minimal false classifications. This 

is reflected in the data shown in Tables 3 and 4, which 

indicate nearly perfect results for accuracy and F1 score. 

 

 

 

 

Table 3. Fake Bandwidth Confusion Matrix 

Confusion Matrix 
Predicted 

False 

Predicted 

True 

Actual False 708 15 

Actual True 0 677 

Test Accuracy 98.93% 

 

Table 4. Fake Bandwidth Classification Report 

  
Precision Recall 

F1-

score 
Support 

Fake B. 1.00 0.98 0.99 723 

Real B. 0.98 1.00 0.99 677 

Accuracy   0.99 1400 

Macro 

Avg 
0.99 0.99 0.99 1400 

Weighted 

Avg 
0.99 0.99 0.99 1400 

 

These results indicate that, all things considered, from 

the 1,400 test data points, the distribution between the real 

and fake bandwidth remained fairly balanced. However, 

the LSTM model used showed quite a good ability to 

ensure great delineation between the two classes. This 

would, therefore, prove that the LSTM technique is very 

well suited for the task of classifying bandwidth data of 

this nature. Thus, the performance of the model is an 

indication that it can be effectively applied further on 

implementation in real-time network monitoring and 

management. That the LSTM model can differentiate 

accurately between genuine and manipulated bandwidth 

data means it may turn out to be very useful in enhancing 

network security measures and bandwidth allocation 

optimization. Therefore, this is a very vital tool in 

maintaining integrity and efficiency in network operations. 

This evidence can be seen in the Loss over Epochs 

(LSTM) in Figure 13, the Accuracy over Epochs (LSTM) 

in Figure 14, and the Results of the ROC Curve shown in 

Figure 15. 

 

Figure 13. Results of Loss over Epochs (LSTM) 
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Figure 14. Results of Accuracy over Epochs (LSTM) 

 

 

Figure 15. Results of the ROC Curve 

 

Out of the test set of 1,400 samples, 708 samples of fake 

bandwidth and 677 samples of actual bandwidth were 

correctly predicted as True Negatives and True Positives, 

respectively. Fifteen real bandwidth samples were 

misclassified as fake, i.e., False Positives, and no fake 

samples of bandwidth were detected as real, i.e., False 

Negatives. Thus, the precision for fake bandwidth is 1.00, 

meaning all predictions of fake bandwidth were true. The 

recall for fake bandwidth is 0.98, meaning the model was 

almost perfect in the identification of fake bandwidth. The 

precision for real bandwidth is equal to 0.98, consequently 

indicating some slight mistakes in the correct 

identification of real bandwidth. 

The model rapidly reached a high level of accuracy after 

about the first 10 epochs and then remained stable at 

around 98-99% until the end. This goes to show that the 

model very fast learned the patterns necessary to 

distinguish between classes and maintained this without 

significant overfitting, as given by the consistency 

between training and validation accuracy. The graph of 

loss demonstrates a sharp real drop in the values of the loss 

in the first period of training, then the line flattens out, 

which corresponds to stable model performance in making 

the right predictions of classes. 

Mathematically, the model brings down both Type I and 

Type II errors and proves to be very robust in handling 

imbalanced classes. High precision and recall of the 

metrics further underline the effectiveness of the LSTM 

architecture at capturing temporal dependencies and 

sequential patterns intrinsic to bandwidth data. The fact 

that it also performs consistently accurately on the 

validation data and is independent of training set 

significantly justifies the generalization ability of the 

model, thereby making it a very strong tool suited for real-

time network management applications where bandwidth 

classification is required. 

 

C.  Model Performance And Classification Results 

In the case of this study, real bandwidth is defined as a 

condition wherein bytes_down and bytes_up, which are 

amount of data downloaded and uploaded respectively, are 

greater than predefined thresholds (15 Mbps for download 

and 10 Mbps for upload). Data that does not meet these 

criteria are classed as fake bandwidth. The LSTM model 

implemented for this work is relatively complex in the 

sense that it comprises several LSTM layers, each of which 

goes with a Dropout layer to avoid overfitting. For training 

this model, a dataset was divided into two parts: 80% of 

the database was used for training and 20% for testing. 

Throughout more than 50 epochs, the model increased 

its accuracy dramatically to eventually provide an 

accuracy of 98.93%. This result proves that the model 

learned the pattern in data well and could differentiate 

between real and fake bandwidth. A confusion matrix, 

which is always output for the performance of a model in 

test data, has shown that out of 1,400 test samples, 708 

instances of fake bandwidth were correctly classified, and 

677 instances of real bandwidth were rightly identified. 

This came about with just 15 classification errors all on the 

fake bandwidth. No error was made on the real bandwidth. 

Such an outcome would suggest that the model precision 

and recall are both very close to 1.00 hence, very accurate 

and consistent. Mathematically, these results mean that out 

of the 1,400 data points being tested, nearly all the data 

classed as fake bandwidth actually met the initial criteria 

for classification to a very high degree of accuracy. Just 15 

of the 1,400 test data points were misclassified as fake 

bandwidth, giving a very low error proportion of about 

1.07%. This result therefore clearly shows that the system 

is very good and reliable at recognizing anomalies in 

bandwidth. 

 

IV. CONCLUSION 

 

Out of the 1,400 measured data points, the model 

correctly classified 723 of the instances as either fake 

bandwidth and 677 of them as real bandwidth instances. 

This suggests a kind of compromise between real and fake 

bandwidth over the course of a month, thereby proving the 

efficiency of the LSTM model on network data 

preprocessed by the RB 1100 AHx router. Such high 

accuracy and analysis confirm the effectiveness of the 

LSTM model in distinguishing between the bandwidth that 

is real and that which is fake, hence securing the network 

monitoring efficiently. Through numerical data and 

graphical results, the presented case of the reliability of the 

model for this task of classification is presented with a very 

low error rate. This means that more important analysis 

should be made under different data models other than a 

single big network model the likes concerning user access 

patterns or bandwidth usage patterns across multiple 

routers. Such could ensure the robustness and adaptability 

of the LSTM model in varied network environments.  
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