
TEPIAN Vol. 5 No. 2 (June 2024) 50-57 p-ISSN 2721-5350 e-ISSN 2721-5369 

https://doi.org/10.51967/tepian.v5i2.2994 © 2024 Tepian Politeknik Pertanian Negeri Samarinda 
 This work is licensed under a Creative Commons Attribution 4.0 License CC-BY 

–  50 –  

Cloud Storage for Object Detection using ESP32-

CAM 
 

Imron * 

Software Engineering Technology, 

Polytechnic Agricultural of 

Samarinda, Samarinda, 75242, 

Indonesia 

imron@politanisamarinda.ac.id 

*Corresponding Author 

Bagus Satria  

Software Engineering Technology, 

Polytechnic Agricultural of 

Samarinda, Samarinda, 75242, 

Indonesia 

bagussatria@politanisamarinda.ac.id 

 

Syafei Karim  

Accounting Information System, 

Polytechnic Agricultural of 

Samarinda, Samarinda, 75242, 

Indonesia  

syfei.karim@gmail.com 

 

Fajar Ramadhani  

Accounting Information System, Polytechnic 

Agricultural of Samarinda, Samarinda, 75242, 

Indonesia  

fajar.ramadhani@politanisamarinda.ac.id 

 

 Submitted: 2024-05-14; Accepted: 2024-06-10; Published: 2024-06-10 

 

Abstract— Cloud storage services can create an object 

storage bucket to store our pictures, among them the 

Cloud Storage FUSE, Scaleway, S3 bucket, Firebase, etc. 

intelligent IoT systems generate vast amounts of multi-

source industrial data, which necessitate a large amount 

of storage and processing power to enable real-time data 

processing and analysis. Cloud computing can be 

intricately linked into intelligent IIoT systems due to its 

strong computational and storage capabilities. Cloud 

Storage for Object Detection using ESP32-CAM. Create 

a workable solution that supports distributed storage 

bucket and implement it in a real-world setting. 

Implement the entire system as an addition to the well-

known IoT cloud storage and run multiple experiments to 

evaluate its functionality in scenarios with varying setups 

and system. The target objects that are used as data sets 

are the ESP8266, Wemos D1, and Arduino Uno. Figuring 

out the ideal parameters for training the FOMO (First 

Object, More Object) model and then putting it into 

practice. It was necessary to find a balance between 

learning rate and accuracy, on the other hand, to maintain 

the highest possible accuracy in the identification of the 

microcontroller object to minimize the number of false 

positive reports. Find the value learning rate effective to 

this object is 0.01 with F1 score 98.7% and accuracy 

score 89.58%. 

 

Keywords— Cloud Storage, ESP32CAM, Object 

Detection, FOMO. 

I.  INTRODUCTION 

Storage for data that is either kept for short periods of 

Storage for data that is either kept for short periods of 

time or is regularly accessed ("hot" data). For machine 

learning applications, cloud storage is a popular option 

for storing training data, models, and checkpoints in 

cloud storage buckets. Benefits from cloud storage's scale 

include low cost, high throughput, and ease of use. Many 

cloud storage services can create an object storage bucket 

to store our pictures, among them the Cloud Storage 

FUSE, Scaleway, S3 bucket, Firebase, etc. All the while 

keeping apps compatible with those that need or use 

filesystem semantics. Additionally, storage buckets now 

include caching, which delivers a training throughput that 

is 2.9 times greater and a time to train that is up to 2.2 

times faster than native ML framework data loaders.  

Since scala producing more data than ever before and 

losing it more frequently due to computer hard drive 

crashes, misplacing it, erasing it by accident, and other 

mishaps, cloud backups have become a crucial service. 

The application of the Internet of Things (IoT) in the 

industrial field is known as Industry 4.0, or the Industrial 

Internet of Things (IIoT) (Bagchi et al., 2022).  

It has a significant impact on the advancement of 

manufacturing, energy, transportation, and health care 

and is a key component of the intelligent era. To enable 

the monitoring of contemporary industrial departments, 

the intelligent Industrial Internet of Things system of 

today integrates several kinds of terminal sensor 

equipment and virtual information systems via wireless 

communication networks. Because of this, intelligent IoT 

systems generate vast amounts of multi-source industrial 

data, which necessitate a large amount of storage and 

processing power to enable real-time data processing and 

analysis. Cloud computing can be intricately linked into 

intelligent IIoT systems due to its strong computational 

and storage capabilities. The industrial data kept on cloud 

servers helps to guarantee the continuous monitoring of 

the state of industrial processes. Additionally, in order to 

advance industrial projects, some research institutes could 

receive outsourced industrial data so they can perform in-

depth data analysis with the aid of cloud-based industrial 

monitoring systems. 
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The objective this paper discusses Cloud Storage for 

Object Detection using ESP32-CAM. Create a workable 

solution that supports distributed storage bucket and 

implement it in a real-world setting. Implement the entire 

system as an addition to the well-known IoT cloud 

storage and run multiple experiments to evaluate its 

functionality in scenarios with varying setups and system. 

This paper is organized into five sections as follows: 

Section I explains the background of the proposed 

method. Section II introduces the state of the art. Section 

III condition of problems formulation and explains the 

details of the problem. Section III shows the analysis and 

the result of simulation for planning robot people 

follower. Section IV concludes the final paper. 

II. LITERATURE REVIEW 

The Internet of Things has made it possible to connect 

a variety of sensors and actuators to a production site's 

network, allowing for the collection and analysis of a vast 

amount of data for the purposes of manufacturing 

collaboration, operation monitoring, predictive 

maintenance, and other industry trends. Current IoT 

communication architectures are typically built on top of 

cloud platforms, which serve as middlemen and link IoT 

devices together. This approach encourages 

heterogeneous device disparities between application 

developers and device manufacturers due to the 

platform's complexity, but standard protocols are needed 

for these devices to communicate with one another 

(Alejandro et al., 2023; Verma et al., 2023). 

One of the most important and fundamental tasks in 

computer vision problems is object detection. For 

computation on embedded and/or edge-IoT devices, real-

time object detection applications need excellent 

accuracy at low power consumption. Conventional 

methods for object detection that rely on region-based 

and sliding window techniques have a large computing 

overhead and poor accuracy (Hazarika et al., 2022). 

Numerous academics have looked into text recognition 

and picture processing, as well as the best methods for 

extracting text only and improving system accuracy. 

Training and testing are the two processes required to 

create machine learning models. As a result, supervised 

learning (labelled), unsupervised learning (unlabeled), 

and semi-supervised learning (partially labelled) are the 

three distinct strategies that are defined based on whether 

the available data are labelled. 

Based on the ESP32 chip, the ESP32-S module is a 

feature of the ESP32-CAM. The ESP32 is a popular and 

potent microcontroller featuring a dual-core processor, 

lots of RAM, many I/O interfaces, and Bluetooth and Wi-

Fi connection. This makes it possible for the ESP32-

CAM to effectively manage networking duties in addition 

to camera operations. A versatile development board, the 

ESP32-CAM combines an ESP32-S module with a 

camera module that records both photos and videos. 

Because it is made especially for projects requiring Wi-Fi 

and camera capabilities, it can be used for a variety of 

applications, including image recognition projects, 

surveillance systems, and Internet of Things (IoT) 

devices (Kaur et al., 2021). 

This section will showcase projects that have 

employed cameras and cloud storage. Two serverless data 

pipeline strategies created using Apache NiFi and 

Message Queuing Telemetry Transport (MQTT). Tested 

our suggested methods using the image streaming data, 

doing object detection in the pictures (Mirampalli et al., 

2024). Other hand Create a novel model that tracks plant 

growth in agricultural fields using the OV2640 camera 

module, ESP32-CAM, a solar panel, and a mobile 

application (Elhattab et al., 2023). To accomplish high 

accuracy license plate identification, design uses three 

image processing stages: pre-processing, segmentation, 

and character recognition(Abdellatif et al., 2023). MQTT 

full solution for a MQTT broker system that is 

distributed(Akshatha & Dilip Kumar, 2023; X. Liu et al., 

2020).  

This method is based on the "first object, more object" 

(FOMO) real-time object detection technique, which has 

been modified for the energy-efficient ESP32 

microcontroller architecture (Novak et al., 2024). It is 

suggested to use privacy-preserving dynamic auditing for 

code-based storage regeneration in cloud fog-assisted 

IIoT(D. Liu et al., 2024). architecture of a storage 

auditing scheme that divides its computation and storage 

functionalities(Chen et al., 2024). The kind of data 

needed to train the model can be used to categorize 

anomaly detection techniques based on machine learning 

techniques. TinyML can applied to the 

detection(Hammad et al., 2023). Topic-based routing 

scheme for MQTT distributed broker. Builds several 

overlay networks within the distributed system, each 

connecting brokers whose associated clients share a 

common interest in certain themes (Longo & Redondi, 

2023). Authentication mechanisms for IoT distributed 

MQTT has been reviewed (Kurdi & Thayananthan, 2021). 

The objective this paper discusses Cloud Storage for 

Object Detection using ESP32-CAM. Create a workable 

solution that supports distributed storage bucket and 

implement it in a real-world setting. Implement the entire 

system as an addition to the well-known IoT cloud 

storage and run multiple experiments to evaluate its 

functionality in scenarios with varying setups and system. 

III. RESEARCH METHODS  

The primary objective of this work is to develop a 

workable solution that can be applied in a real-world 

scenario to enable distributed cloud storage. While the 

approach described in this paper can be used with any 

real time storage firebase implementation, in this case we 

start with the widely used firebase storage bucket and 

adapt it to accommodate a distributed scenario. This 

decision was driven by firebase extremely 

straightforward administration, which provides a free and 

open source for changing behavior through plugins. The 

plugin gives developers access to a number of callbacks 

that are readily connected to user-defined logic. The 

ESP32-CAM is a key component of our model. It serves 

as the brains of the system, allowing vital information on 
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object detection to be collected and transmitted in real 

time. Its Wi-Fi connectivity allows for remote monitoring 

and guarantees smooth communication between different 

components. 

OV2640 camera is an essential component for tracking 

plant development. Precise details in crop evolution may 

be captured because to its exceptional image quality and 

high resolution. It is especially helpful for closely 

monitoring a plant's growth and for identifying health 

problems early on. Determining the technical 

specifications needed to construct an all-inclusive system. 

This objective covers both software and hardware. The 

ideal hardware configuration must be determined in order 

to successfully apply the neural network model, taking 

into account the functional constraints imposed on the 

system's actual use. Figuring out the ideal parameters for 

training the FOMO (First Object, More Object) model 

and then putting it into practice. figuring out the best 

parameter combination to use this model with in devices 

with lesser performance. gives a thorough overview of 

the technical aspects of integrating the project's hardware 

and software components. Using sample data, the trained 

FOMO neural network model's quality is confirmed 

(Hammad et al., 2023; Novak et al., 2024). 

 

A key component of the cloud computing 

infrastructure for storing data in the form of digital 

objects is object storage buckets. Buckets are containers 

that let users store and arrange data in an organized way 

when using cloud storage services like Microsoft Azure 

Blob Storage, Google Cloud Storage, and Amazon S3. 

Every bucket has its own name and distinct URL for 

access. The key benefits of employing object storage 

buckets are their cost-effectiveness, high durability, ease 

of scalability, intuitive management, and ability to 

integrate with other cloud services. For this reason, object 

storage buckets are essential to offering a safe, 

dependable, and effective storage infrastructure for a 

variety of workloads and applications. 

 

A. Data set/Data labelling 

A dataset is an entity or example-based collection of 

data used for analysis, machine learning, or testing 

algorithms. Datasets can contain a variety of data types, 

such as text, pictures, audio, or more numerical data. The 

image data collection that was gathered under these 

circumstances contains requirements for three different 

kinds of objects. The target objects that are used as data 

sets are the ESP8266, Wemos D1, and Arduino Uno. The 

process of assigning a label or annotation to every entity 

in the dataset is also known as data labeling. These labels 

offer details on each entity's traits or class, which are then 

utilized for further analysis needs or to train machine 

learning algorithms. Depending on the type of data and 

task difficulty, labeling can be done automatically by 

certain algorithms or manually by humans. In Figure 1 is 

a data set of images that have been labeled for each 

object. Figure 2 show the characteristic data set divide 

into three classes.  

When exploring a dataset, the first step is to look at 

basic summary statistics to get a general idea of the data. 

This helps understand the distribution of values, range of 

variability, and extreme values that may need to be 

considered. After that, create a graphical visualization of 

the data using a bar chart, histogram, or scatter diagram. 

This helps in identifying patterns, trends, or correlations 

that may exist between variables. Next, check for the 

presence of missing values and make a decision about 

how best to handle them.  

 

 
 

Figure.1 Data Set Labelling 

 

 
 

Figure.2 Visualization Data Set Classes 

 

Then, it can look for outliers or unusual data that 

might influence the analysis. After that, explore the 

distribution of key variables in the dataset to ensure a 

solid understanding of the data. Correlation between 

variables to discover interesting relationships or hidden 

patterns. Figure 3 shows a visualization of the class data 

set. Third categories are divided into classes and 

exploratory data is visualized. 

 



TEPIAN Vol. 5 No. 2 (June 2024) 50-57 p-ISSN 2721-5350 e-ISSN 2721-5369 
Imron, I., Satria, B., Karim, S., & Ramadhani, F. (2024). Cloud Storage for Object Detection using ESP32-CAM. TEPIAN, 5(2). 

https://doi.org/10.51967/tepian.v5i2.2994. 50-57 

–  53 –  

 
Figure.3 Object Storage bucket 

 

Finally, it divides the dataset into subsets based on 

certain criteria for further analysis, such as segmentation 

by specific categories or value ranges. With careful 

exploration of the dataset, one can move to the next stage 

in data analysis with greater confidence. 

 

B. Principle of operation 

The process of taking pictures is carried out in several 

stages. The process is carried out by following the cloud 

storage procedural method of working. ESP32-CAM 

makes the object recognition part in this condition carried 

out in the object-type of microcontroller. The object 

retrieval test was chosen with a level of similarity that is 

not much different between Arduino Uno and Wemos 

D1. Meanwhile, another object was created with a 

different shape contrast, namely esp8266. The similar 

shape between Arduino Uno and Wemos D1 will be 

tested by looking at the accuracy of the differences in 

images captured by the ESP32-CAM camera. Then, it 

was tested with objects of different shapes and sizes, 

namely esp8266, which can be seen from the margin of 

error of significant differences.  

Procedure Establishing the firebase setting up the 

devices. Create first Hub and with choose the free shared 

plan for system open and free charge. Add two distinct 

devices: the firebase explorer, a software that will be used 

to activate the camera and view the payloads passing over 

cloud, and the camera itself, which is ESP32 cam 

hardware. Allow unsecure connections so can easily 

connect our devices to our cloud. The IoT cloud storage 

allow data to adding file into destinations. In this project 

use the Object Storage Route. Object storage stores object 

images taken based on the object detection used. Figure 4 

show proposed model for system. 

 

 
 

Figure 4. Proposed Model 

 

C. Firebase  

The tools provided by Firebase allow you to "build, 

improve, and grow your app." Developers would 

typically have to construct many of these services 

themselves because they would like to concentrate on 

creating the app experience itself. Analytics, 

authentication, databases, configuration, file storage, push 

messaging, and a long number of other items are all 

included in this. The services scale with little to no effort 

from the developer because they are hosted in the cloud. 

Massively scalable file storage is offered by cloud 

storage. Furthermore, it's not a Firebase offering; rather, 

it's a Google Cloud product. Using client SDKs that you 

can integrate into your app, Cloud Storage for Firebase 

allows you to upload and download files straight to and 

from your Cloud Storage "bucket" (Li et al., 2024; Q. Liu 

et al., 2023). 

People can submit unique avatars to Greta's games 

using Cloud Storage, and they can share images with 

each other on Shawn's social network. Since Cloud 

Storage can accommodate exabytes of data, neither of 

them has to worry about running out of room. When 

utilize security rules (for Realtime Database, Fire store, 

and Cloud Storage) to apply access control data at the 

source, authentication functions incredibly well with 

these three technologies. This helps to prevent 

unfortunate situations like the one with the lolrus above 

by guaranteeing that clients can access that data only in 

the manner permit. 

 

D. Alghorithm 

In this research, a low-cost smart system that can 

shorten the time spent looking for an object detection 

microcontroller is proposed. Once the system can detect 

the object, save the image into the object storage bucket 

hub. The demonstrates the suggested system model, 

which is made up of the image processing and capture 

elements. Pre-processing and object recognition are the 

two stages of the image processing technique, whilst the 

image capturing block is the initial input image that is 
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obtained through the use of ESP32 cameras. Any image 

processing technique's effectiveness depends on how well 

the acquired images are adjusted and presented in a 

format that allows for future stages to operate efficiently. 

This occurs during the pre-processing phase, when the 

taken images perform a number of operations, including 

scaling, rotation, and resizing. After that, the altered 

photos are transformed from their original RGB format to 

grayscale. In order to process the photos more quickly 

and robustly in the subsequent steps, this step is required. 

Then, to create a smoother image to work with, the 

grayscale image is interpolated using the nearest neighbor 

method. 

First go over the depthwise separable filters that form 

the foundation of MobileNet. After that, we go over the 

MobileNet network architecture before summarizing the 

two model shrinkage hyperparameters. multiplier for both 

width and resolution (Howard et al., 2017; Sandler et al., 

2018). In order to create a new representation, the basic 

convolution operation has the effect of merging features 

and filtering them using the convolutional kernels. For a 

significant reduction in computing cost, the filtering and 

combination procedures can be divided into two parts by 

using factorized convolutions known as depthwise 

separable convolutions. Pointwise and depthwise 

convolutions are the two layers that make up a depthwise 

separable convolution. Both batchnorm and ReLU 

nonlinearities are used by MobileNets for both layers. 

One filter per input channel (input depth) for 

depthwise convolution can be expressed from equation 

(1) as follows: 

 

 

(1) 

where  is the depthwise convolutional kernel of size 

 where the  filter in  is applied to the 

 channel in  to produce the mth channel of the 

filtered output feature map . 

The computational cost of depthwise convolution 

from equation (2) is: 

 

 (2) 

Comparing depthwise convolution to ordinary 

convolution, it is incredibly efficient. It does not, 

however, combine input channels to produce new 

features—rather, it only filters them. Therefore, to 

produce these new features, an extra layer that computes 

a linear combination of the output of depthwise 

convolution via 1 × 1 convolution is required. 

Depthwise separable convolution, first presented in 

equation 3, is a combination of depthwise convolution 

and 1 × 1 (pointwise) convolution. which is the sum of 

the depthwise and 1 × 1 pointwise convolutions from 

equation 3 

 

 (3) 

By expressing convolution as a two step process of 

filtering and combining we get a reduction in 

computation from equation 4 of: 

 

 

 

(4) 

IV RESULTS AND DISCUSSION 

Assuming 20% of the test set's data, baseline testing was 

done to confirm that recognition can be implemented in 

ESP32-Cam for both data sets on 60 epochs. The table, 

Table 1, displays the results. The table shows that in a 

229-frame data set with a learning rate of 0.01, the 

highest F1 score is 98.7%. This would mean that with the 

set parameters, this would be the best training and, 

therefore, the best model. In the data set with learning 

rate 0.001, the best score is 85%. However, these values 

are valid for the training data set. Accuracy can be 

misleading when used with unbalanced data sets, and 

therefore, there are other metrics based on the ambiguity 

matrix that can be useful for performance evaluation. A 

quick look at the quality of the result is shown by the 

substitute matrices. An objective result of the quality of 

the model with a measure of generalisation is shown by 

the results of computations on the test data set. At a 

learning rate of 0.1 the F1 score result is 74.7%. This 

condition explains that the learning rate used is not good 

enough compared to other learning rates. The accuracy 

obtained reached 64.5%. The accuracy (accuracy) is then 

best for a learning rate of 0.001. 

 

Table 1. Score and Accuracy  

Data Set 
Learning 

rate 

F1 score – 

validation 

Accuracy – test 

model 

229 0.001 85 70.83 

229 0.01 98.7 89.58 

229 0.1 74.7 64.58 

 

It can be seen from a thorough comparison of the test 

data classifications and the observed results that the 

network can recognize objects. A portion of all noted 

cases in the results are false positives, even if positive 

examples are marked in the results. Retraining the model 

and enlarging the data set should produce more accurate 

results. As a C++ library built in the Edge Impulse 

environment using the created model, the final model was 

implemented in ESP32-Cam. The value of the needed 

Flash RAM size is crucial in addition to the final F1 score 

component. One classifyHole() method in the device 

control code implements the model itself. The video is 

used to do picture categorization in order to evaluate this 

functionality. The resulting image is used to do the 

categorization. The image is resized to fit the model's 

resolution because the ESP32-Cam streams the picture at 

1600 x 1200px. 320 × 320 pixels was the resolution used 

to train the model. 
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A. Testing 

Tests were conducted throughout the project at two 

primary levels. The effectiveness and dependability of the 

wireless transmission, the functionality of the control 

software, and its capacity to interface with the ESP32-

CAM were assessed during the first round of hardware 

testing. The outcomes demonstrated that the Wi-Fi link 

was reliable and able to send photos in real time to the 

cloud storage firebase bucket storage with no latency. 

Testing of extra components under control that have been 

shown to reliably function as a whole.  

Using the FOMO model for microcontroller detection, 

the ESP32-CAM's performance was evaluated in the 

second testing phase. It was discovered that the ESP32-

CAM could process image data using the FOMO 

algorithm with sufficient performance, especially when 

using MobileNet V1. At longer distances, there are 

certain drawbacks such as reduced resolution and image 

quality. Since the ESP32-Cam MCU is capable of using a 

variety of lens types, image quality at longer range may 

be enhanced by swapping out the standard OV2640 lens 

for a higher-resolution one like the OV3660. However, as 

the object is often used for detection at distances of no 

more than 0.5 meters, employing the normal lens is 

sufficient when taking into account the typical usage 

scenario of the camera probe. For lower distances 

between the object and the camera, the lens width is the 

most important factor to note. Upon closer inspection, the 

Fisheye wide-angle lens module makes this possible. 

Figures 5 explain the changes in object detection at 

each learning rate tested. The results found that changes 

between correct object detection and object detection 

with incorrect results were carried out.  At a learning rate 

of 0.001, there were 14 objects tested that did not match 

the correct detection object. Meanwhile, at an object 

detection learning rate of 0.01, 5 inappropriate objects 

were found, while at a learning rate of 0.1, 17 object 

detections were found that did not match the desired 

object. This illustrates the suitability between the training 

data that has been carried out on the test and validation 

data in the image. 

 

 
 

Figure 5. Learning rate 0.001 

 

 

B. Bucket Storage 

Google's platform for creating mobile applications, 

Firebase, offers a variety of services for managing data 

from web, iOS, and Android applications. establish a 

real-time database (RTDB)-equipped Firebase project. 

File storage in the cloud is possible with Firebase 

Storage. then, by accessing the Firebase console, can 

view those files. 

The results stored in the storage bucket show that the 

objects that have been detected can be stored in the cloud. 

This data is easy to store and easy to access. The process 

of storing goes through several stages, namely setting 

authentication, setting rules, and setting storage. Figure 6 

is the result of an image that has been managed and 

stored in the database. The data base type used is littleFS, 

this type will be the purpose of storing the images that 

have been taken. Apart from that, the process specified is 

the file extension used in this case img.png is set. 

Authentication is used to keep data accessible only by the 

email and password that have been set.  

Specify the structure, indexing strategy, and read and 

write access times for your data using the declarative 

rules language offered by Cloud Storage for Firebase. 

Only authorized users are able to view or write data in 

Cloud Storage by default due to restrictions on read and 

write access. 

 

 
 

Figure 6. Bucket storage three micro controller 

 

V CONCLUSION 

The identification of the FOMO object model, a 

sophisticated approach for intelligent microcontroller 

object detection was described in the paper. It was 

difficult to translate machine learning techniques based 

on image processing to the embedded system. On the one 

hand, it was necessary to find a balance between learning 

rate and accuracy, on the other hand, to maintain the 

highest possible accuracy in the identification of the 

microcontroller object to minimize the number of false 

positive reports. To attain a satisfactory success rate, this 

necessitated the expansion of the data collection and a 

thorough classification of the identified objects. 

Additionally, the project made full use of the ESP32-Cam 

board's capabilities to quickly construct a prototype for 

the entire devices.  
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It was necessary to find a balance between learning 

rate and accuracy condition of data, on the other hand, to 

maintain the highest possible accuracy in the 

identification of the microcontroller object to minimize 

the number of false positive reports. Find the value 

learning rate effective to this object is 0.01 with F1 score 

98.7% and accuracy score 89.58%. 

The result shows cloud storage bucket from firebase 

solution to adding picture in cloud. Cloud storage can be 

accessed to develop customized applications for clients. 

Object detection can truly detect this model and save it to 

the cloud. the solution is not without flaws (yet), and, for 

example, extended image augmentation should be 

performed to eliminate known identification issues. 

However, this requires a considerable amount of 

additional effort. 
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