
TEPIAN Vol. 5 No. 2 (June 2024) 50-57 p-ISSN 2721-5350 e-ISSN 2721-5369

https://doi.org/10.51967/tepian.v5i2.2994 © 2024 Tepian Politeknik Pertanian Negeri Samarinda
 This work is licensed under a Creative Commons Attribution 4.0 License CC-BY

– 50 –

Cloud Storage for Object Detection using ESP32-

CAM

Imron *

Software Engineering Technology,

Polytechnic Agricultural of

Samarinda, Samarinda, 75242,

Indonesia

imron@politanisamarinda.ac.id

*Corresponding Author

Bagus Satria

Software Engineering Technology,

Polytechnic Agricultural of

Samarinda, Samarinda, 75242,

Indonesia

bagussatria@politanisamarinda.ac.id

Syafei Karim

Accounting Information System,

Polytechnic Agricultural of

Samarinda, Samarinda, 75242,

Indonesia

syfei.karim@gmail.com

Fajar Ramadhani

Accounting Information System, Polytechnic

Agricultural of Samarinda, Samarinda, 75242,

Indonesia

fajar.ramadhani@politanisamarinda.ac.id

 Submitted: 2024-05-14; Accepted: 2024-06-10; Published: 2024-06-10

Abstract— Cloud storage services can create an object

storage bucket to store our pictures, among them the

Cloud Storage FUSE, Scaleway, S3 bucket, Firebase, etc.

intelligent IoT systems generate vast amounts of multi-

source industrial data, which necessitate a large amount

of storage and processing power to enable real-time data

processing and analysis. Cloud computing can be

intricately linked into intelligent IIoT systems due to its

strong computational and storage capabilities. Cloud

Storage for Object Detection using ESP32-CAM. Create

a workable solution that supports distributed storage

bucket and implement it in a real-world setting.

Implement the entire system as an addition to the well-

known IoT cloud storage and run multiple experiments to

evaluate its functionality in scenarios with varying setups

and system. The target objects that are used as data sets

are the ESP8266, Wemos D1, and Arduino Uno. Figuring

out the ideal parameters for training the FOMO (First

Object, More Object) model and then putting it into

practice. It was necessary to find a balance between

learning rate and accuracy, on the other hand, to maintain

the highest possible accuracy in the identification of the

microcontroller object to minimize the number of false

positive reports. Find the value learning rate effective to

this object is 0.01 with F1 score 98.7% and accuracy

score 89.58%.

Keywords— Cloud Storage, ESP32CAM, Object

Detection, FOMO.

I. INTRODUCTION

Storage for data that is either kept for short periods of

Storage for data that is either kept for short periods of

time or is regularly accessed ("hot" data). For machine

learning applications, cloud storage is a popular option

for storing training data, models, and checkpoints in

cloud storage buckets. Benefits from cloud storage's scale

include low cost, high throughput, and ease of use. Many

cloud storage services can create an object storage bucket

to store our pictures, among them the Cloud Storage

FUSE, Scaleway, S3 bucket, Firebase, etc. All the while

keeping apps compatible with those that need or use

filesystem semantics. Additionally, storage buckets now

include caching, which delivers a training throughput that

is 2.9 times greater and a time to train that is up to 2.2

times faster than native ML framework data loaders.

Since scala producing more data than ever before and

losing it more frequently due to computer hard drive

crashes, misplacing it, erasing it by accident, and other

mishaps, cloud backups have become a crucial service.

The application of the Internet of Things (IoT) in the

industrial field is known as Industry 4.0, or the Industrial

Internet of Things (IIoT) (Bagchi et al., 2022).

It has a significant impact on the advancement of

manufacturing, energy, transportation, and health care

and is a key component of the intelligent era. To enable

the monitoring of contemporary industrial departments,

the intelligent Industrial Internet of Things system of

today integrates several kinds of terminal sensor

equipment and virtual information systems via wireless

communication networks. Because of this, intelligent IoT

systems generate vast amounts of multi-source industrial

data, which necessitate a large amount of storage and

processing power to enable real-time data processing and

analysis. Cloud computing can be intricately linked into

intelligent IIoT systems due to its strong computational

and storage capabilities. The industrial data kept on cloud

servers helps to guarantee the continuous monitoring of

the state of industrial processes. Additionally, in order to

advance industrial projects, some research institutes could

receive outsourced industrial data so they can perform in-

depth data analysis with the aid of cloud-based industrial

monitoring systems.

https://www.openaccess.nl/en
https://orcid.org/0009-0002-8566-7025
https://orcid.org/0000-0003-0526-215X
https://orcid.org/0000-0001-5428-7068
https://crossmark.crossref.org/dialog/?doi=10.51967/tepian.v5i2.2994.%20&domain=pdf

TEPIAN Vol. 5 No. 2 (June 2024) 50-57 p-ISSN 2721-5350 e-ISSN 2721-5369
Imron, I., Satria, B., Karim, S., & Ramadhani, F. (2024). Cloud Storage for Object Detection using ESP32-CAM. TEPIAN, 5(2).

https://doi.org/10.51967/tepian.v5i2.2994. 50-57

– 51 –

The objective this paper discusses Cloud Storage for

Object Detection using ESP32-CAM. Create a workable

solution that supports distributed storage bucket and

implement it in a real-world setting. Implement the entire

system as an addition to the well-known IoT cloud

storage and run multiple experiments to evaluate its

functionality in scenarios with varying setups and system.

This paper is organized into five sections as follows:

Section I explains the background of the proposed

method. Section II introduces the state of the art. Section

III condition of problems formulation and explains the

details of the problem. Section III shows the analysis and

the result of simulation for planning robot people

follower. Section IV concludes the final paper.

II. LITERATURE REVIEW

The Internet of Things has made it possible to connect

a variety of sensors and actuators to a production site's

network, allowing for the collection and analysis of a vast

amount of data for the purposes of manufacturing

collaboration, operation monitoring, predictive

maintenance, and other industry trends. Current IoT

communication architectures are typically built on top of

cloud platforms, which serve as middlemen and link IoT

devices together. This approach encourages

heterogeneous device disparities between application

developers and device manufacturers due to the

platform's complexity, but standard protocols are needed

for these devices to communicate with one another

(Alejandro et al., 2023; Verma et al., 2023).

One of the most important and fundamental tasks in

computer vision problems is object detection. For

computation on embedded and/or edge-IoT devices, real-

time object detection applications need excellent

accuracy at low power consumption. Conventional

methods for object detection that rely on region-based

and sliding window techniques have a large computing

overhead and poor accuracy (Hazarika et al., 2022).

Numerous academics have looked into text recognition

and picture processing, as well as the best methods for

extracting text only and improving system accuracy.

Training and testing are the two processes required to

create machine learning models. As a result, supervised

learning (labelled), unsupervised learning (unlabeled),

and semi-supervised learning (partially labelled) are the

three distinct strategies that are defined based on whether

the available data are labelled.

Based on the ESP32 chip, the ESP32-S module is a

feature of the ESP32-CAM. The ESP32 is a popular and

potent microcontroller featuring a dual-core processor,

lots of RAM, many I/O interfaces, and Bluetooth and Wi-

Fi connection. This makes it possible for the ESP32-

CAM to effectively manage networking duties in addition

to camera operations. A versatile development board, the

ESP32-CAM combines an ESP32-S module with a

camera module that records both photos and videos.

Because it is made especially for projects requiring Wi-Fi

and camera capabilities, it can be used for a variety of

applications, including image recognition projects,

surveillance systems, and Internet of Things (IoT)

devices (Kaur et al., 2021).

This section will showcase projects that have

employed cameras and cloud storage. Two serverless data

pipeline strategies created using Apache NiFi and

Message Queuing Telemetry Transport (MQTT). Tested

our suggested methods using the image streaming data,

doing object detection in the pictures (Mirampalli et al.,

2024). Other hand Create a novel model that tracks plant

growth in agricultural fields using the OV2640 camera

module, ESP32-CAM, a solar panel, and a mobile

application (Elhattab et al., 2023). To accomplish high

accuracy license plate identification, design uses three

image processing stages: pre-processing, segmentation,

and character recognition(Abdellatif et al., 2023). MQTT

full solution for a MQTT broker system that is

distributed(Akshatha & Dilip Kumar, 2023; X. Liu et al.,

2020).

This method is based on the "first object, more object"

(FOMO) real-time object detection technique, which has

been modified for the energy-efficient ESP32

microcontroller architecture (Novak et al., 2024). It is

suggested to use privacy-preserving dynamic auditing for

code-based storage regeneration in cloud fog-assisted

IIoT(D. Liu et al., 2024). architecture of a storage

auditing scheme that divides its computation and storage

functionalities(Chen et al., 2024). The kind of data

needed to train the model can be used to categorize

anomaly detection techniques based on machine learning

techniques. TinyML can applied to the

detection(Hammad et al., 2023). Topic-based routing

scheme for MQTT distributed broker. Builds several

overlay networks within the distributed system, each

connecting brokers whose associated clients share a

common interest in certain themes (Longo & Redondi,

2023). Authentication mechanisms for IoT distributed

MQTT has been reviewed (Kurdi & Thayananthan, 2021).

The objective this paper discusses Cloud Storage for

Object Detection using ESP32-CAM. Create a workable

solution that supports distributed storage bucket and

implement it in a real-world setting. Implement the entire

system as an addition to the well-known IoT cloud

storage and run multiple experiments to evaluate its

functionality in scenarios with varying setups and system.

III. RESEARCH METHODS

The primary objective of this work is to develop a

workable solution that can be applied in a real-world

scenario to enable distributed cloud storage. While the

approach described in this paper can be used with any

real time storage firebase implementation, in this case we

start with the widely used firebase storage bucket and

adapt it to accommodate a distributed scenario. This

decision was driven by firebase extremely

straightforward administration, which provides a free and

open source for changing behavior through plugins. The

plugin gives developers access to a number of callbacks

that are readily connected to user-defined logic. The

ESP32-CAM is a key component of our model. It serves

as the brains of the system, allowing vital information on

TEPIAN Vol. 5 No. 2 (June 2024) 50-57 p-ISSN 2721-5350 e-ISSN 2721-5369
Imron, I., Satria, B., Karim, S., & Ramadhani, F. (2024). Cloud Storage for Object Detection using ESP32-CAM. TEPIAN, 5(2).

https://doi.org/10.51967/tepian.v5i2.2994. 50-57

– 52 –

object detection to be collected and transmitted in real

time. Its Wi-Fi connectivity allows for remote monitoring

and guarantees smooth communication between different

components.

OV2640 camera is an essential component for tracking

plant development. Precise details in crop evolution may

be captured because to its exceptional image quality and

high resolution. It is especially helpful for closely

monitoring a plant's growth and for identifying health

problems early on. Determining the technical

specifications needed to construct an all-inclusive system.

This objective covers both software and hardware. The

ideal hardware configuration must be determined in order

to successfully apply the neural network model, taking

into account the functional constraints imposed on the

system's actual use. Figuring out the ideal parameters for

training the FOMO (First Object, More Object) model

and then putting it into practice. figuring out the best

parameter combination to use this model with in devices

with lesser performance. gives a thorough overview of

the technical aspects of integrating the project's hardware

and software components. Using sample data, the trained

FOMO neural network model's quality is confirmed

(Hammad et al., 2023; Novak et al., 2024).

A key component of the cloud computing

infrastructure for storing data in the form of digital

objects is object storage buckets. Buckets are containers

that let users store and arrange data in an organized way

when using cloud storage services like Microsoft Azure

Blob Storage, Google Cloud Storage, and Amazon S3.

Every bucket has its own name and distinct URL for

access. The key benefits of employing object storage

buckets are their cost-effectiveness, high durability, ease

of scalability, intuitive management, and ability to

integrate with other cloud services. For this reason, object

storage buckets are essential to offering a safe,

dependable, and effective storage infrastructure for a

variety of workloads and applications.

A. Data set/Data labelling

A dataset is an entity or example-based collection of

data used for analysis, machine learning, or testing

algorithms. Datasets can contain a variety of data types,

such as text, pictures, audio, or more numerical data. The

image data collection that was gathered under these

circumstances contains requirements for three different

kinds of objects. The target objects that are used as data

sets are the ESP8266, Wemos D1, and Arduino Uno. The

process of assigning a label or annotation to every entity

in the dataset is also known as data labeling. These labels

offer details on each entity's traits or class, which are then

utilized for further analysis needs or to train machine

learning algorithms. Depending on the type of data and

task difficulty, labeling can be done automatically by

certain algorithms or manually by humans. In Figure 1 is

a data set of images that have been labeled for each

object. Figure 2 show the characteristic data set divide

into three classes.

When exploring a dataset, the first step is to look at

basic summary statistics to get a general idea of the data.

This helps understand the distribution of values, range of

variability, and extreme values that may need to be

considered. After that, create a graphical visualization of

the data using a bar chart, histogram, or scatter diagram.

This helps in identifying patterns, trends, or correlations

that may exist between variables. Next, check for the

presence of missing values and make a decision about

how best to handle them.

Figure.1 Data Set Labelling

Figure.2 Visualization Data Set Classes

Then, it can look for outliers or unusual data that

might influence the analysis. After that, explore the

distribution of key variables in the dataset to ensure a

solid understanding of the data. Correlation between

variables to discover interesting relationships or hidden

patterns. Figure 3 shows a visualization of the class data

set. Third categories are divided into classes and

exploratory data is visualized.

TEPIAN Vol. 5 No. 2 (June 2024) 50-57 p-ISSN 2721-5350 e-ISSN 2721-5369
Imron, I., Satria, B., Karim, S., & Ramadhani, F. (2024). Cloud Storage for Object Detection using ESP32-CAM. TEPIAN, 5(2).

https://doi.org/10.51967/tepian.v5i2.2994. 50-57

– 53 –

Figure.3 Object Storage bucket

Finally, it divides the dataset into subsets based on

certain criteria for further analysis, such as segmentation

by specific categories or value ranges. With careful

exploration of the dataset, one can move to the next stage

in data analysis with greater confidence.

B. Principle of operation

The process of taking pictures is carried out in several

stages. The process is carried out by following the cloud

storage procedural method of working. ESP32-CAM

makes the object recognition part in this condition carried

out in the object-type of microcontroller. The object

retrieval test was chosen with a level of similarity that is

not much different between Arduino Uno and Wemos

D1. Meanwhile, another object was created with a

different shape contrast, namely esp8266. The similar

shape between Arduino Uno and Wemos D1 will be

tested by looking at the accuracy of the differences in

images captured by the ESP32-CAM camera. Then, it

was tested with objects of different shapes and sizes,

namely esp8266, which can be seen from the margin of

error of significant differences.

Procedure Establishing the firebase setting up the

devices. Create first Hub and with choose the free shared

plan for system open and free charge. Add two distinct

devices: the firebase explorer, a software that will be used

to activate the camera and view the payloads passing over

cloud, and the camera itself, which is ESP32 cam

hardware. Allow unsecure connections so can easily

connect our devices to our cloud. The IoT cloud storage

allow data to adding file into destinations. In this project

use the Object Storage Route. Object storage stores object

images taken based on the object detection used. Figure 4

show proposed model for system.

Figure 4. Proposed Model

C. Firebase

The tools provided by Firebase allow you to "build,

improve, and grow your app." Developers would

typically have to construct many of these services

themselves because they would like to concentrate on

creating the app experience itself. Analytics,

authentication, databases, configuration, file storage, push

messaging, and a long number of other items are all

included in this. The services scale with little to no effort

from the developer because they are hosted in the cloud.

Massively scalable file storage is offered by cloud

storage. Furthermore, it's not a Firebase offering; rather,

it's a Google Cloud product. Using client SDKs that you

can integrate into your app, Cloud Storage for Firebase

allows you to upload and download files straight to and

from your Cloud Storage "bucket" (Li et al., 2024; Q. Liu

et al., 2023).

People can submit unique avatars to Greta's games

using Cloud Storage, and they can share images with

each other on Shawn's social network. Since Cloud

Storage can accommodate exabytes of data, neither of

them has to worry about running out of room. When

utilize security rules (for Realtime Database, Fire store,

and Cloud Storage) to apply access control data at the

source, authentication functions incredibly well with

these three technologies. This helps to prevent

unfortunate situations like the one with the lolrus above

by guaranteeing that clients can access that data only in

the manner permit.

D. Alghorithm

In this research, a low-cost smart system that can

shorten the time spent looking for an object detection

microcontroller is proposed. Once the system can detect

the object, save the image into the object storage bucket

hub. The demonstrates the suggested system model,

which is made up of the image processing and capture

elements. Pre-processing and object recognition are the

two stages of the image processing technique, whilst the

image capturing block is the initial input image that is

TEPIAN Vol. 5 No. 2 (June 2024) 50-57 p-ISSN 2721-5350 e-ISSN 2721-5369
Imron, I., Satria, B., Karim, S., & Ramadhani, F. (2024). Cloud Storage for Object Detection using ESP32-CAM. TEPIAN, 5(2).

https://doi.org/10.51967/tepian.v5i2.2994. 50-57

– 54 –

obtained through the use of ESP32 cameras. Any image

processing technique's effectiveness depends on how well

the acquired images are adjusted and presented in a

format that allows for future stages to operate efficiently.

This occurs during the pre-processing phase, when the

taken images perform a number of operations, including

scaling, rotation, and resizing. After that, the altered

photos are transformed from their original RGB format to

grayscale. In order to process the photos more quickly

and robustly in the subsequent steps, this step is required.

Then, to create a smoother image to work with, the

grayscale image is interpolated using the nearest neighbor

method.

First go over the depthwise separable filters that form

the foundation of MobileNet. After that, we go over the

MobileNet network architecture before summarizing the

two model shrinkage hyperparameters. multiplier for both

width and resolution (Howard et al., 2017; Sandler et al.,

2018). In order to create a new representation, the basic

convolution operation has the effect of merging features

and filtering them using the convolutional kernels. For a

significant reduction in computing cost, the filtering and

combination procedures can be divided into two parts by

using factorized convolutions known as depthwise

separable convolutions. Pointwise and depthwise

convolutions are the two layers that make up a depthwise

separable convolution. Both batchnorm and ReLU

nonlinearities are used by MobileNets for both layers.

One filter per input channel (input depth) for

depthwise convolution can be expressed from equation

(1) as follows:

(1)

where is the depthwise convolutional kernel of size

 where the filter in is applied to the

 channel in to produce the mth channel of the

filtered output feature map .

The computational cost of depthwise convolution

from equation (2) is:

 (2)

Comparing depthwise convolution to ordinary

convolution, it is incredibly efficient. It does not,

however, combine input channels to produce new

features—rather, it only filters them. Therefore, to

produce these new features, an extra layer that computes

a linear combination of the output of depthwise

convolution via 1 × 1 convolution is required.

Depthwise separable convolution, first presented in

equation 3, is a combination of depthwise convolution

and 1 × 1 (pointwise) convolution. which is the sum of

the depthwise and 1 × 1 pointwise convolutions from

equation 3

 (3)

By expressing convolution as a two step process of

filtering and combining we get a reduction in

computation from equation 4 of:

(4)

IV RESULTS AND DISCUSSION

Assuming 20% of the test set's data, baseline testing was

done to confirm that recognition can be implemented in

ESP32-Cam for both data sets on 60 epochs. The table,

Table 1, displays the results. The table shows that in a

229-frame data set with a learning rate of 0.01, the

highest F1 score is 98.7%. This would mean that with the

set parameters, this would be the best training and,

therefore, the best model. In the data set with learning

rate 0.001, the best score is 85%. However, these values

are valid for the training data set. Accuracy can be

misleading when used with unbalanced data sets, and

therefore, there are other metrics based on the ambiguity

matrix that can be useful for performance evaluation. A

quick look at the quality of the result is shown by the

substitute matrices. An objective result of the quality of

the model with a measure of generalisation is shown by

the results of computations on the test data set. At a

learning rate of 0.1 the F1 score result is 74.7%. This

condition explains that the learning rate used is not good

enough compared to other learning rates. The accuracy

obtained reached 64.5%. The accuracy (accuracy) is then

best for a learning rate of 0.001.

Table 1. Score and Accuracy

Data Set
Learning

rate

F1 score –

validation

Accuracy – test

model

229 0.001 85 70.83

229 0.01 98.7 89.58

229 0.1 74.7 64.58

It can be seen from a thorough comparison of the test

data classifications and the observed results that the

network can recognize objects. A portion of all noted

cases in the results are false positives, even if positive

examples are marked in the results. Retraining the model

and enlarging the data set should produce more accurate

results. As a C++ library built in the Edge Impulse

environment using the created model, the final model was

implemented in ESP32-Cam. The value of the needed

Flash RAM size is crucial in addition to the final F1 score

component. One classifyHole() method in the device

control code implements the model itself. The video is

used to do picture categorization in order to evaluate this

functionality. The resulting image is used to do the

categorization. The image is resized to fit the model's

resolution because the ESP32-Cam streams the picture at

1600 x 1200px. 320 × 320 pixels was the resolution used

to train the model.

TEPIAN Vol. 5 No. 2 (June 2024) 50-57 p-ISSN 2721-5350 e-ISSN 2721-5369
Imron, I., Satria, B., Karim, S., & Ramadhani, F. (2024). Cloud Storage for Object Detection using ESP32-CAM. TEPIAN, 5(2).

https://doi.org/10.51967/tepian.v5i2.2994. 50-57

– 55 –

A. Testing

Tests were conducted throughout the project at two

primary levels. The effectiveness and dependability of the

wireless transmission, the functionality of the control

software, and its capacity to interface with the ESP32-

CAM were assessed during the first round of hardware

testing. The outcomes demonstrated that the Wi-Fi link

was reliable and able to send photos in real time to the

cloud storage firebase bucket storage with no latency.

Testing of extra components under control that have been

shown to reliably function as a whole.

Using the FOMO model for microcontroller detection,

the ESP32-CAM's performance was evaluated in the

second testing phase. It was discovered that the ESP32-

CAM could process image data using the FOMO

algorithm with sufficient performance, especially when

using MobileNet V1. At longer distances, there are

certain drawbacks such as reduced resolution and image

quality. Since the ESP32-Cam MCU is capable of using a

variety of lens types, image quality at longer range may

be enhanced by swapping out the standard OV2640 lens

for a higher-resolution one like the OV3660. However, as

the object is often used for detection at distances of no

more than 0.5 meters, employing the normal lens is

sufficient when taking into account the typical usage

scenario of the camera probe. For lower distances

between the object and the camera, the lens width is the

most important factor to note. Upon closer inspection, the

Fisheye wide-angle lens module makes this possible.

Figures 5 explain the changes in object detection at

each learning rate tested. The results found that changes

between correct object detection and object detection

with incorrect results were carried out. At a learning rate

of 0.001, there were 14 objects tested that did not match

the correct detection object. Meanwhile, at an object

detection learning rate of 0.01, 5 inappropriate objects

were found, while at a learning rate of 0.1, 17 object

detections were found that did not match the desired

object. This illustrates the suitability between the training

data that has been carried out on the test and validation

data in the image.

Figure 5. Learning rate 0.001

B. Bucket Storage

Google's platform for creating mobile applications,

Firebase, offers a variety of services for managing data

from web, iOS, and Android applications. establish a

real-time database (RTDB)-equipped Firebase project.

File storage in the cloud is possible with Firebase

Storage. then, by accessing the Firebase console, can

view those files.

The results stored in the storage bucket show that the

objects that have been detected can be stored in the cloud.

This data is easy to store and easy to access. The process

of storing goes through several stages, namely setting

authentication, setting rules, and setting storage. Figure 6

is the result of an image that has been managed and

stored in the database. The data base type used is littleFS,

this type will be the purpose of storing the images that

have been taken. Apart from that, the process specified is

the file extension used in this case img.png is set.

Authentication is used to keep data accessible only by the

email and password that have been set.

Specify the structure, indexing strategy, and read and

write access times for your data using the declarative

rules language offered by Cloud Storage for Firebase.

Only authorized users are able to view or write data in

Cloud Storage by default due to restrictions on read and

write access.

Figure 6. Bucket storage three micro controller

V CONCLUSION

The identification of the FOMO object model, a

sophisticated approach for intelligent microcontroller

object detection was described in the paper. It was

difficult to translate machine learning techniques based

on image processing to the embedded system. On the one

hand, it was necessary to find a balance between learning

rate and accuracy, on the other hand, to maintain the

highest possible accuracy in the identification of the

microcontroller object to minimize the number of false

positive reports. To attain a satisfactory success rate, this

necessitated the expansion of the data collection and a

thorough classification of the identified objects.

Additionally, the project made full use of the ESP32-Cam

board's capabilities to quickly construct a prototype for

the entire devices.

TEPIAN Vol. 5 No. 2 (June 2024) 50-57 p-ISSN 2721-5350 e-ISSN 2721-5369
Imron, I., Satria, B., Karim, S., & Ramadhani, F. (2024). Cloud Storage for Object Detection using ESP32-CAM. TEPIAN, 5(2).

https://doi.org/10.51967/tepian.v5i2.2994. 50-57

– 56 –

It was necessary to find a balance between learning

rate and accuracy condition of data, on the other hand, to

maintain the highest possible accuracy in the

identification of the microcontroller object to minimize

the number of false positive reports. Find the value

learning rate effective to this object is 0.01 with F1 score

98.7% and accuracy score 89.58%.

The result shows cloud storage bucket from firebase

solution to adding picture in cloud. Cloud storage can be

accessed to develop customized applications for clients.

Object detection can truly detect this model and save it to

the cloud. the solution is not without flaws (yet), and, for

example, extended image augmentation should be

performed to eliminate known identification issues.

However, this requires a considerable amount of

additional effort.

REFERENCES

Abdellatif, M. M., Elshabasy, N. H., Elashmawy, A. E.,

& AbdelRaheem, M. (2023). A low cost IoT-

based Arabic license plate recognition model for

smart parking systems. Ain Shams Engineering

Journal, 14(6).

https://doi.org/10.1016/j.asej.2023.102178
Akshatha, P. S., & Dilip Kumar, S. M. (2023). MQTT

and blockchain sharding: An approach to user-

controlled data access with improved security and

efficiency. Blockchain: Research and

Applications, 4(4).

https://doi.org/10.1016/j.bcra.2023.100158

Alejandro, L. L., Gulpric, M. M., Lanon, C. J. F.,

MacAlalag, F. M. A., & Placio, R. M. A. (2023).

ICFY (I Care For You): An IOT Based Fall

Detection and Monitoring Device using ESP32-

CAM and MPU 6050 Sensors. 2023 8th

International Conference on Business and

Industrial Research, ICBIR 2023 - Proceedings,

1009–1013.

https://doi.org/10.1109/ICBIR57571.2023.101475

86

Bagchi, T., Mahapatra, A., Yadav, D., Mishra, D.,

Pandey, A., Chandrasekhar, P., & Kumar, A.

(2022). Intelligent security system based on face

recognition and IoT. Materials Today:

Proceedings, 62, 2133–2137.

https://doi.org/10.1016/j.matpr.2022.03.353

Chen, F., Meng, F., Li, Z., Li, L., & Xiang, T. (2024).

Public cloud object storage auditing: Design,

implementation, and analysis. Journal of Parallel

and Distributed Computing, 189.

https://doi.org/10.1016/j.jpdc.2024.104870

Elhattab, K., Abouelmehdi, K., & Elatar, S. (2023). New

Model to Monitor Plant Growth Remotely using

ESP32-CAM and Mobile Application.

Proceedings - 10th International Conference on

Wireless Networks and Mobile Communications,

WINCOM 2023.

https://doi.org/10.1109/WINCOM59760.2023.103

22939

Hammad, S. S., Iskandaryan, D., & Trilles, S. (2023).

An unsupervised TinyML approach applied to the

detection of urban noise anomalies under the smart

cities environment. Internet of Things

(Netherlands), 23.

https://doi.org/10.1016/j.iot.2023.100848

Hazarika, A., Poddar, S., Nasralla, M. M., & Rahaman,

H. (2022). Area and energy efficient shift and

accumulator unit for object detection in IoT

applications. Alexandria Engineering Journal,

61(1), 795–809.

https://doi.org/10.1016/j.aej.2021.04.099

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D.,

Wang, W., Weyand, T., Andreetto, M., & Adam,

H. (2017). MobileNets: Efficient Convolutional

Neural Networks for Mobile Vision Applications.

http://arxiv.org/abs/1704.04861

Kaur, A., Jadli, A., Sadhu, A., Goyal, S., Mehra, A., &

Rahul. (2021). Cloud Based Surveillance using

ESP32 CAM. International Conference on

Intelligent Technology, System and Service for

Internet of Everything, ITSS-IoE 2021.

https://doi.org/10.1109/ITSS-

IoE53029.2021.9615334

Kurdi, H., & Thayananthan, V. (2021). Authentication

mechanisms for IoT system based on distributed

MQTT brokers: Review and challenges. Procedia

Computer Science, 194, 132–139.

https://doi.org/10.1016/j.procs.2021.10.066

Li, J., Wu, J., Jiang, L., & Li, J. (2024). Blockchain-

based public auditing with deep reinforcement

learning for cloud storage. Expert Systems with

Applications, 242.

https://doi.org/10.1016/j.eswa.2023.122764

Liu, D., Ding, Y., Yu, G., Zhong, Z., & Song, Y. (2024).

Privacy-preserving dynamic auditing for

regenerating code-based storage in cloud-fog-

assisted IIoT. Internet of Things (Netherlands), 25.

https://doi.org/10.1016/j.iot.2024.101084

Liu, Q., Zhang, X., Xue, J., Zhou, R., Wang, X., &

Tang, W. (2023). Enabling blockchain-assisted

certificateless public integrity checking for

industrial cloud storage systems. Journal of

Systems Architecture, 140.

https://doi.org/10.1016/j.sysarc.2023.102898

Liu, X., Zhang, T., Hu, N., Zhang, P., & Zhang, Y.

(2020). The method of Internet of Things access

and network communication based on MQTT.

Computer Communications, 153, 169–176.

https://doi.org/10.1016/j.comcom.2020.01.044

Longo, E., & Redondi, A. E. C. (2023). Design and

implementation of an advanced MQTT broker for

distributed pub/sub scenarios. Computer

Networks, 224.

https://doi.org/10.1016/j.comnet.2023.109601

Mirampalli, S., Wankar, R., & Srirama, S. N. (2024).

Evaluating NiFi and MQTT based serverless data

pipelines in fog computing environments. Future

TEPIAN Vol. 5 No. 2 (June 2024) 50-57 p-ISSN 2721-5350 e-ISSN 2721-5369
Imron, I., Satria, B., Karim, S., & Ramadhani, F. (2024). Cloud Storage for Object Detection using ESP32-CAM. TEPIAN, 5(2).

https://doi.org/10.51967/tepian.v5i2.2994. 50-57

– 57 –

Generation Computer Systems, 150, 341–353.

https://doi.org/10.1016/j.future.2023.09.014

Novak, M., Doležal, P., Budík, O., Ptáček, L., Geyer, J.,

Davídková, M., & Prokýšek, M. (2024).

Intelligent inspection probe for monitoring bark

beetle activities using embedded IoT real-time

object detection. In Engineering Science and

Technology, an International Journal (Vol. 51).

Elsevier B.V.

https://doi.org/10.1016/j.jestch.2024.101637

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., &

Chen, L.-C. (2018). MobileNetV2: Inverted

Residuals and Linear Bottlenecks.

http://arxiv.org/abs/1801.04381

Verma, K., Charan, G. S., Pande, A., Abdalla, Y. A.,

Marshiana, D., & Choubey, C. K. (2023). Internet

Regulated ESP32 Cam Robot. 2023 7th

International Conference On Computing,

Communication, Control And Automation,

ICCUBEA

