Enhancing Geographic Information System Skills through Boundary Mapping Training at Pesantren Rahmatullah, Lempake, Samarinda
DOI:
https://doi.org/10.51967/tanesa.v25i1.2990Keywords:
Development Planning, Geospatial Data Retrieval, Geographic Information Systems Training, Regional Boundary MappingAbstract
This program designed to enhance the skills and knowledge of students and teaching staff at Pesantren Rahmatullah (Islamic boarding school) regarding the use of Geographic Information System (GIS) technology in boundary mapping. The initiative was launched recognizing the importance of understanding territorial boundaries in the context of natural resource management, development planning, and disaster mitigation in the surrounding areas. The training includes a series of theoretical sessions and field practices. The first stage involves learning how to gather coordinate points in the field using the Garmin 60 CSX GPS device. The second stage focuses on field data processing and coordinate data correction, covering basic GIS knowledge, introduction to GIS software, and usage of Autodesk Map software and Arc GIS 10.8. The third stage is the scaled printing of processed field data. The duration of the training is one semester, following the curriculum set by the Rahmatullah Islamic boarding school. This training aims to equip participants with the necessary skills to produce accurate and informative boundary maps, which will later serve as tools for decision-making and strategic planning at Rahmatullah Lempake Islamic boarding school in Samarinda. Additionally, this activity also aims to enhance the boarding school’s awareness and capacity in utilizing geographic information technology for educational and environmental management purposes.
References
Abkarian, H., Tahlyan, D., Mahmassani, H., & Smilowitz, K. (2022). Characterizing visitor engagement behavior at large-scale events : Activity sequence clustering and ranking using GPS tracking data. Tourism Management, 88(August 2021), 104421. https://doi.org/10.1016/j.tourman.2021.104421
Ashour, I., Tokhey, M. El, Mogahed, Y., & Ragheb, A. (2021). Performance of global navigation satellite systems ( GNSS ) in absence of GPS observations. Ain Shams Engineering Journal, xxxx. https://doi.org/10.1016/j.asej.2021.09.016
Bada, M., Eddine, D., Lagraa, N., Abdelaziz, C., Imran, M., & Shoaib, M. (2021). A policy-based solution for the detection of colluding GPS-Spoofing attacks in FANETs. Transportation Research Part A, 149(May), 300–318. https://doi.org/10.1016/j.tra.2021.04.022
Bjørnskov, L., Assing, E., & Boch, F. (2021). Burnout of intrinsically motivated GPs when exposed to external regulation A combined panel data survey and cluster randomized field experiment. 125, 459–466. https://doi.org/10.1016/j.healthpol.2021.01.004
Boakye, K. A., Amram, O., Schuna, J. M., Duncan, G. E., & Hystad, P. (2021). Health and Place GPS-based built environment measures associated with adult physical activity. Health and Place, 70(March), 102602. https://doi.org/10.1016/j.healthplace.2021.102602
C, D. A. (2021). Geodesy and Geodynamics Impact of sampling interval on variance components of epoch-wise residual error in relative GPS positioning : A case study of a 40-km- long baseline. 12, 368–380. https://doi.org/10.1016/j.geog.2021.05.001
Chen, Y., Huang, Z., Ai, H., Guo, X., & Luo, F. (2021). The Impact of GIS / GPS Network Information Systems on the Logistics Distribution Cost of Tobacco Enterprises. Transportation Research Part E, 149(July 2020), 102299. https://doi.org/10.1016/j.tre.2021.102299
Fang, J., He, M., Luan, W., & Jiao, J. (2021). Geodesy and Geodynamics Crustal vertical deformation of Amazon Basin derived from GPS and GRACE / GFO data over past two decades. Geodesy and Geodynamics, xxxx, 0–9. https://doi.org/10.1016/j.geog.2021.09.002
Guo, B., Di, M., Song, F., Li, J., & Shi, S. (2021). Integrated coseismic displacement derived from high-rate GPS and strong-motion seismograph : Application to the 2017 Ms 7 . 0 Jiuzhaigou Earthquake. Measurement, 182(March), 109735. https://doi.org/10.1016/j.measurement.2021.109735
Gurbuz, G., Akgul, V., Gormus, K. S., & Kutoglu, S. H. (2021). Journal of Atmospheric and Solar-Terrestrial Physics Assessment of precipitable water vapor over Turkey using GLONASS and GPS. Journal of Atmospheric and Solar-Terrestrial Physics, 222(January), 105712. https://doi.org/10.1016/j.jastp.2021.105712
Halloran, J. O., Sophie, A., Bj, L., & Gyrd-hansen, D. (2021). Social Science & Medicine Time to retire ? A register-based study of GPs ’ practice style prior to retirement. 281(May). https://doi.org/10.1016/j.socscimed.2021.114099
He, X., Zhang, D., Yang, L., Cui, T., Ding, Y., & Zhong, X. (2021). Design and experiment of a GPS-based turn compensation system for improving the seeding uniformity of maize planter. Computers and Electronics in Agriculture, 187(March), 106250. https://doi.org/10.1016/j.compag.2021.106250
Jayakumar, S., Meghwani, A., Chakrabarti, S., Rajawat, K., & Terzija, V. (2022). International Journal of Electrical Power and Energy Systems Spoofing attack on synchrophasor GPS clock : Impact and detection in power system state estimation. International Journal of Electrical Power and Energy Systems, 134(April 2021), 107396. https://doi.org/10.1016/j.ijepes.2021.107396
Jiang, P., Wu, H., & Xin, C. (2021). DeepPOSE : Detecting GPS spoofing attack Jo ur na of. Digital Communications and Networks. https://doi.org/10.1016/j.dcan.2021.09.006
Kenpankho, P., Chaichana, A., Trachu, K., & Supnithi, P. (2021). ScienceDirect Real-time GPS receiver bias estimation. Advances in Space Research, xxxx, 1–8. https://doi.org/10.1016/j.asr.2021.01.032
Liang, H., Zhan, W., & Li, J. (2021). ScienceDirect Vertical surface displacement of mainland China from GPS using the multisurface function method. Advances in Space Research, xxxx. https://doi.org/10.1016/j.asr.2021.02.024
Muhammad, S., Ibrahim, E., Kholil, M., & Anggara, O. (2021). Geodesy and Geodynamics Source of the 2019 M w 6 . 9 Banten Intraslab earthquake modelled with GPS data inversion. Geodesy and Geodynamics, 12(4), 308–314. https://doi.org/10.1016/j.geog.2021.06.001
Nezhadshahbodaghi, M., & Mosavi, M. R. (2021). A loosely-coupled EMD-denoised stereo VO / INS / GPS integration system in GNSS-denied environments. Measurement, 183(April), 109895. https://doi.org/10.1016/j.measurement.2021.109895
Othman, S. E., Salama, G. M., & Hamed, H. F. A. (2021). Jo ur na l P re of. HELIYON, e08330. https://doi.org/10.1016/j.heliyon.2021.e08330
Rout, A., Nitoslawski, S., Ladle, A., & Galpern, P. (2021). Computers , Environment and Urban Systems Using smartphone-GPS data to understand pedestrian-scale behavior in urban settings : A review of themes and approaches. Computers, Environment and Urban Systems, 90(February), 101705. https://doi.org/10.1016/j.compenvurbsys.2021.101705
Sadeghian, P., Zhao, X., Golshan, A., & Håkansson, J. (2022). A stepwise methodology for transport mode detection in GPS tracking data. Travel Behaviour and Society, 26(December 2020), 159–167. https://doi.org/10.1016/j.tbs.2021.10.004
Sha, A. Z., Aris, W. A. W., Sadiah, S., & Musa, T. A. (2021). Reliability of Seismic Signal Analysis for Earthquake Epicenter Location Estimation Using 1 Hz GPS Kinematic Solution. Measurement, 182(April), 109669. https://doi.org/10.1016/j.measurement.2021.109669
Shen, C., Xiong, Y., Zhao, D., Wang, C., Cao, H., Song, X., Tang, J., & Liu, J. (2022). Multi-rate strong tracking square-root cubature Kalman filter for MEMS-INS / GPS / polarization compass integrated navigation system. Mechanical Systems and Signal Processing, 163(February 2020), 108146. https://doi.org/10.1016/j.ymssp.2021.108146
Sutton, L., Jose, K., Betzold, A., Hansen, E., Laslett, L., Makin, J., Winzenberg, T., Balogun, S., & Aitken, D. (2021). Osteoarthritis and Cartilage Open Understanding the management of osteoarthritis : A qualitative study of GPs and orthopaedic surgeons in Tasmania , Australia. Osteoarthritis and Cartilage Open, 3(4), 100218. https://doi.org/10.1016/j.ocarto.2021.100218
Wu, L., & Hifi, M. (2021). Knowledge-Based Systems Data-driven robust optimization for the itinerary planning via large-scale GPS data. Knowledge-Based Systems, 231, 107437. https://doi.org/10.1016/j.knosys.2021.107437
Xu, J., & Liu, Z. (2021). International Journal of Applied Earth Observations and Geoinformation Radiance-based retrieval of total water vapor content from sentinel-3A OLCI NIR channels using ground-based GPS measurements. International Journal of Applied Earth Observation and Geoinformation, 104, 102586. https://doi.org/10.1016/j.jag.2021.102586
Zeeshan, M., Chu, H., & Burbey, T. J. (2021). Spatio-temporal estimation of monthly groundwater levels from GPS-based land deformation. Environmental Modelling and Software, 143(1), 105123. https://doi.org/10.1016/j.envsoft.2021.105123
Zhang, B., Niu, J., Li, W., Shen, Y., & Wu, T. (2021). ScienceDirect A single station ionospheric empirical model using GPS-TEC observations based on nonlinear least square estimation method. Advances in Space Research, xxxx. https://doi.org/10.1016/j.asr.2021.07.017
Zhang, Y., Xu, C., Fang, J., & Guo, Z. (2021). Geodesy and Geodynamics Focal mechanism inversion of the 2018 M W 7 . 1 Anchorage earthquake based on high-rate GPS observation. Geodesy and Geodynamics, xxxx. https://doi.org/10.1016/j.geog.2021.09.004
Zhao, X. (2021). ScienceDirect Review and evaluation of methods in transport mode detection based on GPS tracking data. 8. https://doi.org/10.1016/j.jtte.2021.04.004
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Buletin Poltanesa
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
The copyright of this article is transferred to Buletin Poltanesa and Politeknik Pertanian Negeri Samarinda, when the article is accepted for publication. the authors transfer all and all rights into and to paper including but not limited to all copyrights in the Buletin Poltanesa. The author represents and warrants that the original is the original and that he/she is the author of this paper unless the material is clearly identified as the original source, with notification of the permission of the copyright owner if necessary.
A Copyright permission is obtained for material published elsewhere and who require permission for this reproduction. Furthermore, I / We hereby transfer the unlimited publication rights of the above paper to Poltanesa. Copyright transfer includes exclusive rights to reproduce and distribute articles, including reprints, translations, photographic reproductions, microforms, electronic forms (offline, online), or other similar reproductions.
The author's mark is appropriate for and accepts responsibility for releasing this material on behalf of any and all coauthor. This Agreement shall be signed by at least one author who has obtained the consent of the co-author (s) if applicable. After the submission of this agreement is signed by the author concerned, the amendment of the author or in the order of the author listed shall not be accepted.