Metode Dea untuk Benchmarking Organisasi

Authors

  • Suci Ramadhani TRPL, Politeknik Pertanian Negeri Samarinda
  • Muslimin B TRPL, Politeknik Pertanian Negeri Samarinda
  • Eny Maria TRPL, Politeknik Pertanian Negeri Samarinda

DOI:

https://doi.org/10.51967/tanesa.v23i1.1291

Keywords:

Benchmarking, Data Evnvelopment Analysis, Linear Programming, Decision Making Unit.

Abstract

Kinerja tiap organisasi perlu dievaluasi secara berkala dalam proses benchmarking. Proses benchmarking ini diharapkan dapat melakukan perbaikan kinerja tiap organisasi sehingga tiap organisasi yang inefficient dapat menjadi efficient. Pada dasarnya proses benchmarking ini dilakukan dengan mengukur input yang diberikan dengan output yang dihasilkan dan perbandingan dengan bagian lain yang ada. Salah satu metode yang dapat digunakan adalah Data Envelopment Analysis (DEA) yang merupakan pendekatan non-parametrik yang berbasis program linear (linear programming) yang digunakan untuk mengukur efisiensi relatif dari setiap Decision Making Unit yang melibatkan penggunaan input-input tertentu untuk menghasilkan output-output tertentu. Dikatakan suatu organisasi efisien jika nilai efficiency adalah sebesar 1 dan jika lebih kecil dari 1 maka dikatakan tidak efisien. Hasil benchmarking diharapkan dapat meningkatkatkan kinerja organisasi. Melalui penelitian diperoleh hasil bahwa Data Envelopment Analysis (DEA) dapat melakukan kegiatan benchmarking dengan baik.

References

Ahmadvand, S., & Pishvaee, M. S. (2018). An efficient method for kidney allocation problem: A credibility-based fuzzy common weights data envelopment analysis approach. Health Care Management Science, 21(4), 587–603. https://doi.org/10.1007/s10729-017-9414-6
Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis. Manage. Sci., 30(9), 1078–1092. https://doi.org/10.1287/mnsc.30.9.1078
Charnes, A., Cooper, W. W., & Rhodes, E. (1979). Measuring the efficiency of decision-making units. European Journal of Operational Research, 3(4), 339. https://doi.org/10.1016/0377-2217(79)90229-7
Claro, D. P., & Kamakura, W. A. (2017). Identifying Sales Performance Gaps with Internal Benchmarking. Journal of Retailing, 93(4), 401–419. https://doi.org/10.1016/j.jretai.2017.08.001
Cook, W. D., Ruiz, J. L., Sirvent, I., & Zhu, J. (2017). Within-group common benchmarking using DEA. European Journal of Operational Research, 256(3), 901–910. https://doi.org/10.1016/j.ejor.2016.06.074
Ding, Y., Zhang, Z., Zhang, Q., Lv, W., Yang, Z., & Zhu, N. (2018). Benchmark analysis of electricity consumption for complex campus buildings in China. Applied Thermal Engineering, 131, 428–436. https://doi.org/10.1016/j.applthermaleng.2017.12.024
Farrell, M. J. (1957). The Measurement of Productive Efficiency. Journal of the Royal Statistical Society. Series A (General), 120(3), 253–290. https://doi.org/10.2307/2343100
Friginal, J., Martínez, M., de Andrés, D., & Ruiz, J.-C. (2016). Multi-criteria analysis of measures in benchmarking: Dependability benchmarking as a case study. Journal of Systems and Software, 111, 105–118. https://doi.org/10.1016/j.jss.2015.08.052
Gaol, A. F. L., & Negoro, N. P. (2017). Penerapan Data Envelopment Analysis Dalam Pengukuran Efisiensi Retailer Produk Kendaraan Merek Toyota. Jurnal Sains dan Seni ITS, 6(1), D68-D72–D72. https://doi.org/10.12962/j23373520.v6i1.22309
Ghiyasi, M. (2017). Inverse DEA based on cost and revenue efficiency. Computers & Industrial Engineering, 114, 258–263. https://doi.org/10.1016/j.cie.2017.10.024
Huppler, K. (2009). The Art of Building a Good Benchmark. In R. Nambiar & M. Poess (Eds.), Performance Evaluation and Benchmarking (pp. 18–30). Springer. https://doi.org/10.1007/978-3-642-10424-4_3
Hwang, S.-N., Lee, H.-S., & Zhu, J. (Eds.). (2016). Handbook of Operations Analytics Using Data Envelopment Analysis. Springer US. //www.springer.com/la/book/9781489977038
Kast, F. E., & Rosenzweig, J. E. (1985). Organization and Management: A Systems and Contingency Approach (Subsequent edition). McGraw-Hill College.
Lai, M.-C., Huang, H.-C., & Wang, W.-K. (2011). Designing a knowledge-based system for benchmarking: A DEA approach. Knowledge-Based Systems, 24(5), 662–671. https://doi.org/10.1016/j.knosys.2011.02.006
Miller, S. M., & Noulas, A. G. (1996). The technical efficiency of large bank production. Journal of Banking & Finance, 20(3), 495–509. https://doi.org/10.1016/0378-4266(95)00017-8
Puri, J., & Verma, M. (2020). Integrated data envelopment analysis and multicriteria decision-making ranking approach based on peer-evaluations and subjective preferences: Case study in banking sector. Data Technologies and Applications, 54(4), 551–582. https://doi.org/10.1108/DTA-01-2020-0003
Rayeni, M. M., & Saljooghi, F. H. (2010). Benchmarking in the Academic Departments using Data Envelopment Analysis. American Journal of Applied Sciences, 7(11), 1464–1469. https://doi.org/10.3844/ajassp.2010.1464.1469
Sinuany‐Stern, Z., Mehrez, A., & Hadad, Y. (2000). An AHP/DEA methodology for ranking decision making units. International Transactions in Operational Research, 7(2), 109–124. https://doi.org/10.1111/j.1475-3995.2000.tb00189.x

Downloads

Published

2022-06-20

How to Cite

Ramadhani, S. ., B, M., & Maria, E. (2022). Metode Dea untuk Benchmarking Organisasi. Buletin Poltanesa, 23(1), 203–209. https://doi.org/10.51967/tanesa.v23i1.1291

Issue

Section

Software Engineering & Informatics