Pemetaan Wilayah Kelurahan Karang Mumus Kota Samarinda Menggunakan Autodesk Map

Authors

  • Andrew Stefano Andrew Teknologi Geomatika, Politeknik Pertanian Negeri Samarinda
  • Sri Endayani Kehutanan, Universitas 17 Agustus 1945 Samarinda
  • Fathiah Pengelolaan Hutan, Politeknik Pertanian Negeri Samarinda

DOI:

https://doi.org/10.51967/tanesa.v23i1.1056

Keywords:

GPS, Jaringan Jalan, Kalibrasi, Map Source, Peta

Abstract

Pesatnya pertumbuhan fisik kota Samarinda mempengaruhi struktur kota dengan adanya ruas jalan baru yang belum tergambar dalam peta. Perlu adanya peta jaringan jalan yang akurat untuk menggambar hal tersebut diperlukan sebuah alat sederhana berupa Global Positioning System (GPS). Tujuan penelitian adalah pembuatan peta batas wilayah administrasi Kelurahan Karang Mumus dan jaringan jalan. Metode penelitian yang digunakan tumpang susun data peta dasar Badan Informasi Geospatial dengan data survei GPS Garmin 76CSx di lapangan, dilakukan dua tahapan yaitu, data sekunder berupa peta wilayah kota Samarinda BAPPEDA Kota. Data primer dilakukan pengambilan titik koordinat peta batas wilayah administrasi dan jaringan jalan Kelurahan Karang Mumus. Dan melakukan proses tumpang susun semua data jaringan ruas jalan dari GPS ditransfer ke komputer kemudian diproses dengan Map Source dan Autodesk Map 2004. Selanjutnya proses drawing dilakukan mulai dari kalibrasi GPS, batas administrasi, dan jaringan jalan diolah dengan menggunakan Microsoft Excel sebagai crosscheck koordinat di lapangan. Data di ekspor ke program Autodesk Map di overlay dengan peta dasar dan citra Quick bird. Hasil penelitian menunjukkan peta wilayah administrasi Kelurahan Karang Mumus dari BAPPEDA Kota Samarinda berbeda dengan hasil survei lapangan dan tumpang susun. Di sebabkan adanya perbedaan peta wilayah administrasi dengan titik patok koordinat di lapangan Kelurahan Karang Mumus.

References

Abkarian, H., Tahlyan, D., Mahmassani, H., & Smilowitz, K. (2022). Characterizing visitor engagement behavior at large-scale events : Activity sequence clustering and ranking using GPS tracking data. Tourism Management, 88(August 2021), 104421. https://doi.org/10.1016/j.tourman.2021.104421
Ashour, I., Tokhey, M. El, Mogahed, Y., & Ragheb, A. (2021). Performance of global navigation satellite systems ( GNSS ) in absence of GPS observations. Ain Shams Engineering Journal, xxxx. https://doi.org/10.1016/j.asej.2021.09.016
Bada, M., Eddine, D., Lagraa, N., Abdelaziz, C., Imran, M., & Shoaib, M. (2021). A policy-based solution for the detection of colluding GPS-Spoofing attacks in FANETs. Transportation Research Part A, 149(May), 300–318. https://doi.org/10.1016/j.tra.2021.04.022
Bjørnskov, L., Assing, E., & Boch, F. (2021). Burnout of intrinsically motivated GPs when exposed to external regulation A combined panel data survey and cluster randomized field experiment. 125, 459–466. https://doi.org/10.1016/j.healthpol.2021.01.004
Boakye, K. A., Amram, O., Schuna, J. M., Duncan, G. E., & Hystad, P. (2021). Health and Place GPS-based built environment measures associated with adult physical activity. Health and Place, 70(March), 102602. https://doi.org/10.1016/j.healthplace.2021.102602
C, D. A. (2021). Geodesy and Geodynamics Impact of sampling interval on variance components of epoch-wise residual error in relative GPS positioning : A case study of a 40-km- long baseline. 12, 368–380. https://doi.org/10.1016/j.geog.2021.05.001
Chen, Y., Huang, Z., Ai, H., Guo, X., & Luo, F. (2021). The Impact of GIS / GPS Network Information Systems on the Logistics Distribution Cost of Tobacco Enterprises. Transportation Research Part E, 149(July 2020), 102299. https://doi.org/10.1016/j.tre.2021.102299
Fang, J., He, M., Luan, W., & Jiao, J. (2021). Geodesy and Geodynamics Crustal vertical deformation of Amazon Basin derived from GPS and GRACE / GFO data over past two decades. Geodesy and Geodynamics, 12(6), 441–450. https://doi.org/10.1016/j.geog.2021.09.002
Guo, B., Di, M., Song, F., Li, J., & Shi, S. (2021). Integrated coseismic displacement derived from high-rate GPS and strong-motion seismograph : Application to the 2017 Ms 7 . 0 Jiuzhaigou Earthquake. Measurement, 182(March), 109735. https://doi.org/10.1016/j.measurement.2021.109735
Gurbuz, G., Akgul, V., Gormus, K. S., & Kutoglu, S. H. (2021). Journal of Atmospheric and Solar-Terrestrial Physics Assessment of precipitable water vapor over Turkey using GLONASS and GPS. Journal of Atmospheric and Solar-Terrestrial Physics, 222(January), 105712. https://doi.org/10.1016/j.jastp.2021.105712
Halloran, J. O., Sophie, A., Bj, L., & Gyrd-hansen, D. (2021). Social Science & Medicine Time to retire ? A register-based study of GPs ’ practice style prior to retirement. 281(May). https://doi.org/10.1016/j.socscimed.2021.114099
He, X., Zhang, D., Yang, L., Cui, T., Ding, Y., & Zhong, X. (2021). Design and experiment of a GPS-based turn compensation system for improving the seeding uniformity of maize planter. Computers and Electronics in Agriculture, 187(March), 106250. https://doi.org/10.1016/j.compag.2021.106250
Jayakumar, S., Meghwani, A., Chakrabarti, S., Rajawat, K., & Terzija, V. (2022). International Journal of Electrical Power and Energy Systems Spoofing attack on synchrophasor GPS clock : Impact and detection in power system state estimation. International Journal of Electrical Power and Energy Systems, 134(April 2021), 107396. https://doi.org/10.1016/j.ijepes.2021.107396
Jiang, P., Wu, H., & Xin, C. (2021). DeepPOSE : Detecting GPS spoofing attack Jo ur na of. Digital Communications and Networks. https://doi.org/10.1016/j.dcan.2021.09.006
Kenpankho, P., Chaichana, A., Trachu, K., & Supnithi, P. (2021). ScienceDirect Real-time GPS receiver bias estimation. Advances in Space Research, xxxx, 1–8. https://doi.org/10.1016/j.asr.2021.01.032
Liang, H., Zhan, W., & Li, J. (2021). ScienceDirect Vertical surface displacement of mainland China from GPS using the multisurface function method. Advances in Space Research, xxxx. https://doi.org/10.1016/j.asr.2021.02.024
Muhammad, S., Ibrahim, E., Kholil, M., & Anggara, O. (2021). Geodesy and Geodynamics Source of the 2019 M w 6 . 9 Banten Intraslab earthquake modelled with GPS data inversion. Geodesy and Geodynamics, 12(4), 308–314. https://doi.org/10.1016/j.geog.2021.06.001
Nezhadshahbodaghi, M., & Mosavi, M. R. (2021). A loosely-coupled EMD-denoised stereo VO / INS / GPS integration system in GNSS-denied environments. Measurement, 183(April), 109895. https://doi.org/10.1016/j.measurement.2021.109895
Othman, S. E., Salama, G. M., & Hamed, H. F. A. (2021). Jo ur na l P re of. HELIYON, e08330. https://doi.org/10.1016/j.heliyon.2021.e08330
Rout, A., Nitoslawski, S., Ladle, A., & Galpern, P. (2021). Computers , Environment and Urban Systems Using smartphone-GPS data to understand pedestrian-scale behavior in urban settings : A review of themes and approaches. Computers, Environment and Urban Systems, 90(February), 101705. https://doi.org/10.1016/j.compenvurbsys.2021.101705
Sadeghian, P., Zhao, X., Golshan, A., & Håkansson, J. (2022). A stepwise methodology for transport mode detection in GPS tracking data. Travel Behaviour and Society, 26(July 2021), 159–167. https://doi.org/10.1016/j.tbs.2021.10.004
Sha, A. Z., Aris, W. A. W., Sadiah, S., & Musa, T. A. (2021). Reliability of Seismic Signal Analysis for Earthquake Epicenter Location Estimation Using 1 Hz GPS Kinematic Solution. Measurement, 182(April), 109669. https://doi.org/10.1016/j.measurement.2021.109669
Shen, C., Xiong, Y., Zhao, D., Wang, C., Cao, H., Song, X., Tang, J., & Liu, J. (2022). Multi-rate strong tracking square-root cubature Kalman filter for MEMS-INS / GPS / polarization compass integrated navigation system. Mechanical Systems and Signal Processing, 163(February 2020), 108146. https://doi.org/10.1016/j.ymssp.2021.108146
Sutton, L., Jose, K., Betzold, A., Hansen, E., Laslett, L., Makin, J., Winzenberg, T., Balogun, S., & Aitken, D. (2021). Osteoarthritis and Cartilage Open Understanding the management of osteoarthritis : A qualitative study of GPs and orthopaedic surgeons in Tasmania , Australia. Osteoarthritis and Cartilage Open, 3(4), 100218. https://doi.org/10.1016/j.ocarto.2021.100218
Wu, L., & Hifi, M. (2021). Knowledge-Based Systems Data-driven robust optimization for the itinerary planning via large-scale GPS data. Knowledge-Based Systems, 231, 107437. https://doi.org/10.1016/j.knosys.2021.107437
Xu, J., & Liu, Z. (2021). International Journal of Applied Earth Observations and Geoinformation Radiance-based retrieval of total water vapor content from sentinel-3A OLCI NIR channels using ground-based GPS measurements. International Journal of Applied Earth Observation and Geoinformation, 104, 102586. https://doi.org/10.1016/j.jag.2021.102586
Zeeshan, M., Chu, H., & Burbey, T. J. (2021). Spatio-temporal estimation of monthly groundwater levels from GPS-based land deformation. Environmental Modelling and Software, 143(1), 105123. https://doi.org/10.1016/j.envsoft.2021.105123
Zhang, B., Niu, J., Li, W., Shen, Y., & Wu, T. (2021). ScienceDirect A single station ionospheric empirical model using GPS-TEC observations based on nonlinear least square estimation method. Advances in Space Research, xxxx. https://doi.org/10.1016/j.asr.2021.07.017
Zhang, Y., Xu, C., Fang, J., & Guo, Z. (2021). Geodesy and Geodynamics Focal mechanism inversion of the 2018 M W 7 . 1 Anchorage earthquake based on high-rate GPS observation. Geodesy and Geodynamics, xxxx. https://doi.org/10.1016/j.geog.2021.09.004
Zhao, X. (2021). ScienceDirect Review and evaluation of methods in transport mode detection based on GPS tracking data. 8. https://doi.org/10.1016/j.jtte.2021.04.004

Downloads

Published

2022-06-20

How to Cite

Andrew, A. S., Endayani, S., & Fathiah. (2022). Pemetaan Wilayah Kelurahan Karang Mumus Kota Samarinda Menggunakan Autodesk Map . Buletin Poltanesa, 23(1), 368–374. https://doi.org/10.51967/tanesa.v23i1.1056

Issue

Section

Geomatics Technology