Application of Digital Image Segmentation of Plantation Fruit Classification in Samarinda Agricultural Polytechnic

Main Article Content

Ella Pajriyani
Eny Maria
Rusmini Rusmini

Abstract

Applications of Digital Image Segmentation of Plantation Fruit Classification in Samarinda State Agricultural Polytechnic Based on Form The development of computer technology at this time has brought significant progress in various aspects of human life. Such development is supported by the availability of increasingly high hardware and software, one of the technologies experiencing rapid development is image processing. Image processing is a system where the process is carried out by entering an image and the result is also an image. Currently the use of digital images is widely used in various fields one of which is in the plantation sector. Therefore, the purpose of this study is to create a digital image segmentation application for the classification of plantation fruit based on shape. The method used for image segmentation is the Thresholding method, while the image classification uses the Artificial Neural Network (ANN) method. The accuracy generated by the system both in the training process and testing shows that the method used can classify fruit images well

Article Details

How to Cite
Pajriyani, E., Maria, E., & Rusmini, R. (2020). Application of Digital Image Segmentation of Plantation Fruit Classification in Samarinda Agricultural Polytechnic. TEPIAN, 1(1), 26-34. Retrieved from http://e-journal.politanisamarinda.ac.id/index.php/tepian/article/view/47
Section
Intelligent System

References

Aditya B.(2014). “Sistem Pengenalan Buah Menggunakan Metode Discrete zconsine Transform dan Euclidean Distance”. Transient. Vol.3, Nomor.2
Ambarwati A.Rossi P.Sutarno.(2016).”Segmentasi Citra Digital Menggunakan Thresholding Outsu Untuk Analisa Perbandingan Deteksi Tepi”.Annual Research Seminar.Vol.21,Nomor.1
Selayang Pandang POLITANI. http://politanisamarinda.ac.id (diakses 20 september 2018).
Arinda Y.P.Palma N.P.Riska H.Ella P.Jumiaty.Putut P.W.(2017).”Segmentasi Citra Digital Bentuk Daun Pada Tanaman di Politani Samarinda Menggunakan Metode Thresholding”.Jurnal Informatika Mulawarman.Vol.12.Nomor.2:1-3
Crane, R.(1997). A Simplified Approach to Image Processing Classical and Modern Techniques in C. Upper Saddle River: Prentice Hall PTR
Destyningtias B., Heranurweni S. dan T. Nurhayati. (2010). Segmentasi Citra Dengan Metode Pengambangan. Jurnal Elektrika. Vol.2, No.1, 2010: 39 – 49.
Fisher, R.; Perkins, S.; Walker, A.; Wolfart, F. (2003). Roberts Cross Edge detector. [Online]. homepages.inf.edu.ac.uk.rbf/HOPR2/Roberts.ht m.
Gonzalez, R.C.; Woods, R.E. (2002).Digital Image Processing. Prentice Hall.
Hermawan, A., (2006). Jaringan Saraf Tiruan dan Aplikasinya.Yogyakarta: Andi
Kumaseh M.R.Luther.L.Nelson.N.(2013).”Segmentasi Citra Digital Ikan Menggunakan Metode Thesholding”Jurnal Ilmiah Sains.Vol.13 Nomor.1.
Kusumadewi, Sri. (2003).”Artificial Intelligence(Teknik dan Aplikasinya)”,Graha Ilmu, Yogjakarta
Lesnussa,Y.A, S. Latuconsina, E. R. Persulessy. (2015).’’ Aplikasi Jaringan Saraf Tiruan Backpropagation’’Jurnal Matematika Integratif. Volume 11 No.2
Munir, R. (2004). Pengolahan Citra Digital. Informatika. Bandung.
Noor, S. C. (2011). “Mengubah Citra Berwarna Menjadi Grayscale Dan Citra Biner” Jurnal Teknologi Informasi Dinamik. Vol.16 Nomor.1
Pahlevi.R.N.(2018).”Aplikasi Pengolahan Pola Citra Daun denga metode jaringan syaraf tiruan (JST)”. Skripsi sarjana terapan D4 jurusan manajemen informatika: Politeknik Pertanian Negeri Samarinda, 37-40.a
Pamungkas, A. (2016). Jaringan Syaraf Tiruan untuk Klasifikasi Citra Daun. https://pemrogramanmatlab.com (diakses pada 24 Juni 2019).
Prasetyo, E. (2011). Pengolahan Citra Digital Dan Aplikasinya Menggunakan Matlab. Andi, Yogyakarta.
Purba, D. (2010). Pengolahan Citra Digital. Andi, Yogyakarta
Pukeng, A. F., Fauzi, R. R., Andrea, R., Yulsilviana, E., & Mallala, S. (2019, October). An intelligent agent of finite state machine in educational game “Flora the Explorer”. In Journal of Physics: Conference Series (Vol. 1341, No. 4, p. 042006). IOP Publishing.
Puspitaningrum D., (2006). Pengantar Jaringan Syaraf Tiruan, Penerbit Andi Yogyakarta.
Suhendra, A. (2012). Catatan Kuliah Pengantar Pengolahan Citra Http://Ftp. Gunadarma.Ac.Id (diunduh 02 Oktober 2018).
Sutoyo, T., dkk. (2009). Teori Pengolahan Citra Digital. Andi Publisher.
Kusumadewi, Sri. (2003).”Artificial Intelligence(Teknik dan Aplikasinya)”,Graha Ilmu, Yogjakarta
Vincent, S., T, S., Edy, M., Dwi, N. O., & Wijanarto. (2009). Teori Pengolahan Citra Digital. Yogyakarta: ANDI.